
CS 5/7320
Artificial Intelligence

Solving problems
by searching
AIMA Chapter 3

Slides by Michael Hahsler
based on slides by Svetlana Lazepnik
with figures from the AIMA textbook.

This work is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License. Online Material

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Contents

What are
search

problems?
Tree search Search

Space
Uninformed

search
Informed

search

Contents

What are
search

problems?
Tree search Search

Space
Uninformed

search
Informed

search

What are Search Problems?

• We will consider the problem of designing goal-based agents in
known, fully observable, and deterministic environments.

• Example environment:

Start

Exit

Remember: Goal-based Agent
• The agent has the task to reach a defined goal state.
• The performance measure is typically the cost to reach the goal.
• We will discuss a special type of goal-based agents called planning agents which

use search algorithms to plan a sequence of actions that lead to the goal.

𝑎𝑎𝑠𝑠 = argmina∈A[𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠, 𝑠𝑠1, 𝑠𝑠2, … , 𝑠𝑠𝑛𝑛 𝑠𝑠𝑛𝑛 ∈ 𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔]

Maze
Agent’s
location

Map of
the maze

Exit
location

Search
for a plan

Planning for Search Problems

• For now, we consider only a discrete
environment using an atomic state
representation (states are just labeled 1, 2, 3,
…).

• The state space is the set of all possible states of
the environment and some states are marked as
goal states.

• The optimal solution is the sequence of actions
(or equivalently a sequence of states) that gives
the lowest path cost for reaching the goal.

Initial state

Goal
state

z

1

Phases:
1) Search/Planning: the process of looking for the sequence of actions that reaches a

goal state. Requires that the agent knows what happens when it moves!
2) Execution: Once the agent begins executing the search solution in a deterministic,

known environment, it can ignore its percepts (open-loop system).

Definition of a Search Problem

• Initial state: state description
• Actions: set of possible actions 𝐴𝐴
• Transition model: a function that

defines the new state resulting from
performing an action in the current
state

• Goal state: state description
• Path cost: the sum of step costs

Important: The state space is typically too large to be enumerated, or it is
continuous. Therefore, the problem is defined by initial state, actions and the
transition model and not the set of all possible states.

g i

Transitions
Actions: {N, E, S, W}

Discretization grid

Initial state

1

4

a

Goal
state

z

Transition Function and Available Actions
• As an action schema:

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑔𝑔𝑔𝑔 𝑑𝑑𝑑𝑑𝑑𝑑
PRECOND: no wall in direction 𝑑𝑑𝑑𝑑𝑑𝑑
EFFECT: change the agent’s location according to 𝑑𝑑𝑑𝑑𝑑𝑑

• As a function:
 𝑓𝑓: 𝑆𝑆 × 𝐴𝐴 → 𝑆𝑆 or 𝑠𝑠′ = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑎𝑎, 𝑠𝑠)

• Function implemented
as a table representing
the state space
as a graph.

• Available actions in a state come from the
transition function. E.g.,

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(4) = {𝐸𝐸, 𝑆𝑆, 𝑁𝑁}

𝑠𝑠 𝑎𝑎 𝑠𝑠𝑠

1 S 2

2 N 1

2 S 3

… … …

4 E a

4 S 5

4 N 3

… … …

g i

Transitions
Actions: {N, E, S, W}

Discretization grid

Initial state

1

4 a

Goal state

z

2
3

5

Original Description

Note: Known and deterministic is a property of the transition function!

Example: Romania Vacation

• Initial state: Arad
• Actions: Drive from

one city to another.
• Transition model

and states: If you go
from city A to city B,
you end up in city B.

• Goal state: Bucharest
• Path cost: Sum of

edge costs.

• On vacation in Romania; currently in Arad
• Flight leaves tomorrow from Bucharest

Distance in miles

State Space/Transition model
Defined as a graph

Original Description

Example: Vacuum world

• Initial State: Defined by agent location and dirt location.

• Actions: Left, right, suck

• Transition model: Clean a location or move.
• Goal state: All locations are clean.
• Path cost: E.g., number if actions

Goal states

State Space

There are 8 possible
atomic states of the
system.
Why is the number of
states for n possible
locations 𝑛𝑛 2𝑛𝑛 ?

Example: Sliding-tile Puzzle
• Initial State: A given configuration.

• Actions: Move blank left, right, up, down

• Transition model: Move a tile

• Goal state: Tiles are arranged empty and 1-8 in order

• Path cost: 1 per tile move.

State space size

Each state describes the location of each tile (including the
empty one). ½ of the permutations are unreachable.

• 8-puzzle: 9!/2 = 181,440 states

• 15-puzzle: 16!/2 ≈ 1013 states

• 24-puzzle: 25!/2 ≈ 1025 states

Example: Robot Motion Planning

• Initial State: Current arm position.
• States: Real-valued coordinates of robot joint angles.
• Actions: Continuous motions of robot joints.
• Goal state: Desired final configuration (e.g., object is grasped).
• Path cost: Time to execute, smoothness of path, etc.

Contents

What are
search

problems?
Tree search Search

Space
Uninformed

search
Informed

search

Solving Search Problems

Given a search
problem definition

• Initial state
• Actions
• Transition model
• Goal state
• Path cost

How do we find the
optimal solution
(sequence of
actions/states)?

Construct a
search tree
for the state
space graph!

Initial state

Goal states

State space

Issue: Transition Model is Not a Tree!
It can have Redundant Paths

Initial state

Goal states
Initial state

Goal states

Cycles
Return to the same state. The search tree will create a new node!

Non-cycle redundant paths
Multiple paths to get to the same state

Path 1 Path 2

Cycle

Search Tree
• Superimpose a “what if” tree of possible actions

and outcomes (states) on the state space graph.
• The Root node represents the initial stare.
• An action child node is reached by an edge

representing an action. The corresponding state
is defined by the transition model.

• Trees cannot have cycles (loops) or multiple
paths to the same state. These are called
redundant paths. Cycles in the search space
must be broken to prevent infinite loops.
Removing other redundant paths improves
search efficiency.

• A path through the tree corresponds to a
sequence of actions (states).

• A solution is a path ending in a node
representing a goal state.

• Nodes vs. states: Each tree node represents a
state of the system. If redundant path cannot be
prevented then state can be represented by
multiple nodes.

… …

a

f

Root node =
Initial state

Child node

Edge = Action

Node representing
a Goal state

b

d

c

e

Solution path

Non-cycle
redundant

path

b

e

…

Differences Between Typical Tree Search and
AI Search

Typical tree search

• Assumes a given tree that fits
in memory.

• Trees have by construction no
cycles or redundant paths.

AI tree/graph search

• The search tree is too large to fit into
memory.

a. Builds parts of the tree from the
initial state using the transition
function representing the graph.

b. Memory management is very
important.

• The search space is typically a very
large and complicated graph.
Memory-efficient cycle checking is
very important to avoid infinite loops
or minimize searching parts of the
search space multiple times.

• Checking redundant paths often
requires too much memory and we
accept searching the same part
multiple times.

Tree Search Algorithm Outline

1. Initialize the frontier (set of unexplored know nodes)
using the starting state/root node.

2. While the frontier is not empty:
a) Choose next frontier node to expand according to

search strategy.
b) If the node represents a goal state, return it as the

solution.
c) Else expand the node (i.e., apply all possible actions to

the transition model) and add its children nodes
representing the newly reached states to the frontier.

Tree Search Example
Frontier

Transition model

Tree Search Example

1. Expand Arad

Frontier

Transition model

Tree Search Example

Frontier

2. Expand Sibiu

Example of
a cycle

Transition model

We could have
also expanded
Timisoara or
Zerind!

Search Strategies: Properties

• A search strategy is defined by picking the order of node
expansion.

• Strategies are evaluated along the following dimensions:
• Completeness: does it always find a solution if one exists?
• Optimality: does it always find a least-cost solution?
• Time complexity: how long does it take?
• Space complexity: how much memory does it need?

Search Strategies: Time and Space Complexity

• A search strategy is defined by picking the order of node
expansion.

• Worst case time and space complexity are measured in terms of
the size of the state space n (= number of nodes in the search
tree).

𝑂𝑂(𝑛𝑛)

• Often used metrics if the state space is only implicitly defined by
initial state, actions and a transition function are:

• 𝑏𝑏: maximum branching factor of the search tree (number of available
actions).

• 𝑚𝑚: length of the longest path (loops need to be removed).
• 𝑑𝑑: depth of the optimal solution.

𝑛𝑛 = 𝑓𝑓 𝑑𝑑, 𝑚𝑚, 𝑏𝑏 ⇒ 𝑂𝑂(𝑓𝑓(𝑑𝑑, 𝑚𝑚, 𝑏𝑏))

State Space
• Number of different states the agent and environment

can be in.
• Reachable states are defined by the initial state and the

transition model. Not all states may be reachable from
the initial state.

• Search tree spans the state space. Note that a single
state can be represented by several search tree nodes if
we have redundant paths.

• State space size is an indication of problem size.

State Space Size Estimation

• Even if the used algorithm represents the state space
using atomic states, we may know that internally they
have a factored representation that can be used to
estimate the problem size.

• The basic rule to calculate (estimate) the state space size
for factored state representation with 𝑙𝑙 fluents
(variables) is:

 𝑛𝑛 = 𝑋𝑋1 × 𝑋𝑋2 × ⋯ × 𝑋𝑋𝑙𝑙

where ⋅ is the number of possible values.

State representation

𝑥𝑥1
𝑥𝑥2
…

The state consists of
variables called fluents

that represent
conditions that can
change over time.

In how many ways can we
order/arrange n objects?

#Python
import math

print (math.factorial(23))

Factorial: 𝑛𝑛! = 𝑛𝑛 × 𝑛𝑛 − 1 × ⋯ × 2 × 1

Source: Permutations/Combinations Cheat Sheets by Oleksii Trekhleb
https://itnext.io/permutations-combinations-algorithms-cheat-sheet-68c14879aba5

2 × 2 = 22 = 4
3 × 2 × 1 = 6

https://itnext.io/permutations-combinations-algorithms-cheat-sheet-68c14879aba5

#Python
import scipy.special

the two give the same
results
scipy.special.binom(10, 5)
scipy.special.comb(10, 5)

Binomial Coefficient: 𝑛𝑛
𝑟𝑟 = 𝐶𝐶 𝑛𝑛, 𝑟𝑟 = 𝑛𝑛𝐶𝐶𝑟𝑟

Read as “n choose r” because it is the number
of ways can we choose 𝑟𝑟 out of 𝑛𝑛 objects?
Special case for 𝑟𝑟 = 2: 𝑛𝑛

2 = 𝑛𝑛(𝑛𝑛−1)
2

Source: Permutations/Combinations Cheat Sheets by Oleksii Trekhleb
https://itnext.io/permutations-combinations-algorithms-cheat-sheet-68c14879aba5

3
2 = 3

https://itnext.io/permutations-combinations-algorithms-cheat-sheet-68c14879aba5

Example: What is the State Space Size?

Dirt
• Permutation: A and B are different rooms, order

does matter!
• With repetition: Dirt can be in both rooms.
• There are 2 options (clean/dirty)

→ 22

Robot location
• Can be in 1 out of 2 rooms.

→ 2

Total: 𝑛𝑛 = 2 × 22= 23 = 8

r … # of rooms
n … options

Maze 8-queens problem 8-puzzle problem Tic-tac-toe

Examples: What is the State Space Size?

Often a rough upper limit is sufficient to determine how hard the search problem is.

Maze 8-queens problem 8-puzzle problem Tic-tac-toe

Examples: What is the State Space Size?

Often a rough upper limit is sufficient to determine how hard the search problem is.

Positions the agent
can be in.

n = Number of
white squares.

All arrangements with
8 queens on the
board.

𝑛𝑛 < 264 ≈ 1.8 × 1019

We can only have 8
queens:
𝑛𝑛 = 64

8 ≈ 4.4 × 109

All arrangements
of 9 elements.

𝑛𝑛 ≤ 9!

Half is
unreachable:

𝑛𝑛 =
9!
2 = 181,440

All possible boards.

𝑛𝑛 < 39 = 19,683

Many boards are not
legal (e.g., all x’s)

The actual number can be
obtained by a depth-first
traversal of the game tree.

Example: What is the Search Complexity?

• 𝑏𝑏: maximum branching factor
= number of available
actions?

3

• 𝑚𝑚: the number of actions in
any path? Without loops!

4

• 𝑑𝑑: depth of the optimal
solution?

3

Initial state

Goal states

State Space with Transition Model

Maze 8-queens problem 8-puzzle problem Tic-tac-toe

Examples: What is the
Search Complexity?
Often a rough upper limit is sufficient to determine how hard the search problem is.

𝑏𝑏 =
𝑚𝑚 =
𝑑𝑑 =

𝑏𝑏: maximum branching factor
𝑚𝑚: max. depth of tree
𝑑𝑑: depth of the optimal solution

Maze 8-queens problem 8-puzzle problem Tic-tac-toe

Examples: What is the
Search Complexity?
Often a rough upper limit is sufficient to determine how hard the search problem is.

𝑏𝑏 = 4 actions

𝑚𝑚 = longest path to the
goal or a dead end
(bounded by 𝑥𝑥 × 𝑦𝑦)

𝑑𝑑 = shortest path to
the goal (bounded by
𝑥𝑥 × 𝑦𝑦)

𝑏𝑏: maximum branching factor
𝑚𝑚: max. depth of tree
𝑑𝑑: depth of the optimal solution

𝑏𝑏 = ? What are the
actions? Moving one
Queen: 64 − 7 = 57

𝑚𝑚 = We may have to
try all: 64

8 ≈ 4.4 × 109

𝑑𝑑 = move each queen
in the right spot = 8

𝑏𝑏 = 4 actions to move
the empty tile.

𝑚𝑚 = Try all 𝑂𝑂(9!)

𝑑𝑑 = ???

𝑏𝑏 = 9 actions for the
first move.
𝑚𝑚 = 9

𝑑𝑑 = 9 (if both play
optimal)

Uninformed Search

Uninformed Search Strategies

The search algorithm/agent is not provided information about how
close a state is to the goal state. It just has the labels of the atomic
states and the transition function.

It blindly searches following a simple strategy until it finds the goal
state by chance.

Search strategies we will discuss:
Breadth-first search
Uniform-cost search

Depth-first search
Iterative deepening search

Breadth-First Search (BFS)

Expansion rule: Expand shallowest unexpanded node in the frontier
(=FIFO).

Data Structures
• Frontier data structure: holds references to the green nodes (green) and is

implemented as a FIFO queue.
• Reached data structure: holds references to all visited nodes (gray and green)

and is used to prevent visiting nodes more than once (redundant path checking).
• Builds a tree with links between parent and child.

Implementation: BFS

37

reached makes sure we do not
visit nodes twice (e.g., in a

cycle or other redundant path).
Fast lookup is important.

Expand adds the next level
below node to the frontier.

Implementation: Expanding the Search Tree

• AI tree search creates the search tree while searching.
• The EXPAND function tries all available actions in the current node

using the transition function (RESULTS). It returns a list of new nodes
for the frontier.

Node structure for
the search tree.
Yield can also be
implemented by
returning a list of

Nodes.

Transition
function

Time and Space Complexity
Breadth-First Search

All paths to the depth of the goal are expanded:
1 + 𝑏𝑏 + 𝑏𝑏2 + … + 𝑏𝑏𝑑𝑑 ⇒ 𝑂𝑂 𝑏𝑏𝑑𝑑

Goalm = 3

d = 1b = 2

A

D F

B C

E G

C Goal

ex
pa

nd
ed

d: depth of the optimal solution
m: max. depth of tree
b: maximum branching factor

E

Properties of Breadth-First Search

• Complete?
Yes

• Optimal?
Yes – if cost is the same per step (action). Otherwise: Use uniform-cost search.

• Time?
Number of nodes created: 𝑂𝑂(𝑏𝑏𝑑𝑑)

• Space?
Stored nodes: 𝑂𝑂(𝑏𝑏𝑑𝑑)

Note:
• The large space complexity is usually a bigger problem than time!

d: depth of the optimal solution
m: max. depth of tree
b: maximum branching factor

Uniform-cost Search
(= Dijkstra’s Shortest Path Algorithm)
• Expansion rule: Expand node in the frontier with the least path cost from the initial state.
• Implementation: best-first search where the frontier is a priority queue ordered by lower 𝑓𝑓(𝑛𝑛) =

path cost (cost of all actions starting from the initial state).
• Breadth-first search is a special case when all step costs being equal, i.e., each action costs the

same!

• Complete?
Yes, if all step cost is greater than some small positive constant ε > 0

• Optimal?
Yes – nodes expanded in increasing order of path cost

• Time?
Number of nodes with path cost ≤ cost of optimal solution (C*) is O(b1+C*/ ε).
This can be greater than O(bd): the search can explore long paths consisting of small steps before exploring

shorter paths consisting of larger steps

• Space?
O(b1+C*/ ε)

See Dijkstra's algorithm on Wikipedia

d: depth of the optimal solution
m: max. depth of tree
b: maximum branching factor

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

Implementation: Best-First Search Strategy

42

This check is the difference
to BFS! It visits a node again

if it can be reached by a
better (cheaper) path.

The order for expanding the
frontier is determined by
f(n) = path cost from the

initial state to node n.

See BFS for function EXPAND.

Depth-First
Search (DFS)

• Expansion rule:
Expand deepest
unexpanded
node in the
frontier (last
added).

• Frontier: stack
(LIFO)

• No reached data
structure!

Cycle checking
checks only the
current path.

Redundant paths
can not be
identified and
lead to replicated
work.

Implementation: DFS
• DFS could be implemented like BFS/Best-first search and just taking the last

element from the frontier (LIFO).
• However, to reduce the space complexity to 𝑂𝑂(𝑏𝑏𝑏𝑏), the reached data structure

needs to be removed! Options:
• Recursive implementation (cycle checking is a problem leading to infinite loops)
• Iterative implementation: Build tree and abandoned branches are removed from memory.

Cycle checking is only done against the current path. This is similar to Backtracking search.

If we only keep the current path from
the root to the current node in

memory, then we can only check
against that path to prevent cycles, but

we cannot prevent other redundant
paths. We also need to make sure the

frontier does not contain the same
state more then once!

See BFS for function EXPAND.

DFS uses ℓ = ∞

Time and Space Complexity
Depth-First Search

• Time: 𝑂𝑂(𝑏𝑏𝑚𝑚) – worst case is expanding all paths.
• Space: 𝑂𝑂(𝑏𝑏𝑏𝑏) - if it only stores the frontier nodes and the current path.

A

E

CB

D

m = 3

d = 1

Goal

b = 2

H DFS finds this goal first  Not optimal!

Goal

d: depth of the optimal solution
m: max. depth of tree
b: maximum branching factor

I

Properties of Depth-First Search

• Complete?
• Only in finite search spaces. Cycles can be avoided by checking for repeated states

along the path.
• Incomplete in infinite search spaces (e.g., with cycles).

• Optimal?
No – returns the first solution it finds.

• Time?
The worst case is to reach a solution at maximum depth m in the last path: 𝑂𝑂 𝑏𝑏𝑚𝑚

Terrible compared to BFS if 𝑚𝑚 ≫ 𝑑𝑑.

• Space?
𝑂𝑂 𝑏𝑏𝑏𝑏 is linear in max. tree depth 𝒎𝒎 which is very good but only achieved if no

reached data structure and memory management (forget old branches) is used!
Cycles can be broken but redundant paths cannot be checked.

d: depth of the optimal solution
m: max. depth of tree
b: maximum branching factor

Iterative Deepening Search (IDS)

Can we
a) get DFS’s good memory footprint,
b) avoid infinite cycles, and
c) preserve BFS’s optimality guaranty?

Use depth-restricted DFS and gradually increase the depth.

1. Check if the root node is the goal.
2. Do a DFS searching for a path of length 1
3. If goal not found, do a DFS searching for a path of length 2
4. If goal not found, do a DFS searching for a path of length 3
5. …

Iterative
Deepening
Search
(IDS)

Implementation: IDS

See BFS for function EXPAND.

Properties of Iterative Deepening Search

• Complete?
Yes

• Optimal?
Yes, if step cost = 1 (like BFS)

• Time?
Consists of rebuilding trees up to 𝑑𝑑 times
𝑑𝑑𝑏𝑏 + (𝑑𝑑 − 1)𝑏𝑏2 + … + 1𝑏𝑏𝑑𝑑 = 𝑂𝑂(𝑏𝑏𝑑𝑑)  Slower than BFS, but the same complexity class!

• Space?
O(bd)  linear space. Even less than DFS since 𝒎𝒎 ≤ 𝒅𝒅. Cycles need to be handled by the

depth-limited DFS implementation.

Note: IDS produces the same result as BFS but trades better space complexity for
worse run time.

d: depth of the optimal solution
m: max. depth of tree
b: maximum branching factor

This makes IDS/DFS the
workhorse of AI.

Informed Search

Informed Search

• AI search problems typically have a very large search space. We would like to
improve efficiency by expanding as few nodes as possible.

• The agent can use additional information in the form of “hints” about what
promising states are to explore first. These hints are derived from

• information the agent has (e.g., a map with the goal location marked) or
• percepts coming from a sensor (e.g., a GPS sensor and coordinates of the goal).

• The agent uses a heuristic function 𝒉𝒉(𝒏𝒏) to rank nodes in the frontier and
always select the most promising node in the frontier for expansion using
the best-first search strategy.

• Algorithms:
• Greedy best-first search
• A* search

Heuristic Function

• Heuristic function ℎ(𝑛𝑛) estimates the cost of reaching a node representing
the goal state from the current node 𝑛𝑛.

• Examples:

Start state

Goal state

Start state

Goal state

Euclidean distance Manhattan distance

Heuristic for the Romania Problem

h(n)

Estimate the driving distance from Arad to Bucharest using a straight-line distance.

Greedy Best-First Search Example
Expansion rule: Expand the
node that has the lowest value
of the heuristic function h(n) h(n)=

Greedy Best-First Search Example

Greedy Best-First Search Example

Greedy Best-First Search Example

Total:
 140 + 99 + 211 = 450 miles

Properties of Greedy Best-First Search

• Complete?
Yes – Best-first search if complete in finite spaces.

• Optimal?
No

Total:
 140 + 99 + 211 = 450 miles

Alternative through Rimnicu Vilcea:
 140 + 80 + 97 + 101 = 418 miles

Implementation of Greedy Best-First search

Best-First
Search

Expand the frontier
using

 𝑓𝑓 𝑛𝑛 = ℎ(𝑛𝑛)

Implementation of Greedy Best-First Search

61

This check is the different to
BFS! It visits a node again if it

can be reached by a better
(cheaper) path.

The order for expanding the
frontier is determined by

f(n)

See BFS for function EXPAND.

Heuristic 𝒉𝒉(𝒏𝒏) so we expand the node with the lowest estimated cost

Properties of Greedy Best-First Search

• Complete?
Yes – Best-first search if complete in finite spaces.

• Optimal?
No

• Time?
Worst case: O(bm)  like DFS
Best case: O(bm) – If ℎ(𝑛𝑛) is 100% accurate we only expand a

single path.

• Space?
Same as time complexity.

d: depth of the optimal solution
m: max. depth of tree
b: maximum branching factor

The Optimality Problem of
Greedy Best-First search

ℎ = 1 is always better than ℎ = 2.
Greedy best-first will go this way

and never reconsider!

Greedy best-first search only considers the estimated cost to the goal.

A* Search

• Idea: Take the cost of the path to 𝑛𝑛 called 𝑔𝑔(𝑛𝑛) into account to avoid
expanding paths that are already very expensive.

• The evaluation function 𝑓𝑓(𝑛𝑛) is the estimated total cost of the path
through node 𝑛𝑛 to the goal:

𝑓𝑓(𝑛𝑛) = 𝑔𝑔(𝑛𝑛) + ℎ(𝑛𝑛)
𝑔𝑔(𝑛𝑛): cost so far to reach n (path cost)
ℎ(𝑛𝑛): estimated cost from n to goal (heuristic)

• The agent in the example above will stop at n with 𝑓𝑓 𝑛𝑛 = 3 + 1 = 4 and chose
the path up with a better 𝑓𝑓 𝑛𝑛𝑛 = 1 + 2 = 3.

Note: For greedy best-first search we just used 𝑓𝑓(𝑛𝑛) = ℎ(𝑛𝑛).

𝑔𝑔(𝑛𝑛) = 3
n

n’

f 𝑛𝑛 = 4

f 𝑛𝑛′ = 3

A* Search Example

𝑓𝑓 𝑛𝑛 = 𝑔𝑔(𝑛𝑛) + ℎ(𝑛𝑛) =Expansion rule:
Expand the node with
the smallest f(n)

ℎ(𝑛𝑛)

A* Search Example
𝑓𝑓 𝑛𝑛 = 𝑔𝑔 𝑛𝑛 + ℎ(𝑛𝑛)

ℎ(𝑛𝑛)

A* Search Example
𝑓𝑓 𝑛𝑛 = 𝑔𝑔 𝑛𝑛 + ℎ(𝑛𝑛)

ℎ(𝑛𝑛)

A* Search Example
𝑓𝑓 𝑛𝑛 = 𝑔𝑔 𝑛𝑛 + ℎ(𝑛𝑛)

ℎ(𝑛𝑛)

A* Search Example
𝑓𝑓 𝑛𝑛 = 𝑔𝑔 𝑛𝑛 + ℎ(𝑛𝑛)

ℎ(𝑛𝑛)

A* Search Example
𝑓𝑓 𝑛𝑛 = 𝑔𝑔 𝑛𝑛 + ℎ(𝑛𝑛)

ℎ(𝑛𝑛)

Source: Wikipedia

BFS vs. A* Search

BFS

A* A*

https://en.wikipedia.org/wiki/A*_search_algorithm

Implementation of A* Search

72

This check is different to
BFS! It visits a node again if it

can be reached by a better
(cheaper) redundant path.

The order for expanding the
frontier is determined by

𝑓𝑓(𝑛𝑛)

See BFS for function EXPAND.

Path cost to 𝑛𝑛 + heuristic from 𝑛𝑛 to goal = estimate of the total cost
𝑔𝑔 𝑛𝑛 + ℎ(𝑛𝑛)

Optimality: Admissible Heuristics

Definition: A heuristic ℎ is admissible if for every node 𝑛𝑛,
ℎ 𝑛𝑛 ≤ ℎ∗(𝑛𝑛), where ℎ∗(𝑛𝑛) is the true cost to reach the goal
state from 𝑛𝑛.
I.e., an admissible heuristic is a lower bound and never
overestimates the true cost to reach the goal.

Example: straight line distance never overestimates the actual
road distance.

Theorem: If ℎ is admissible, A* is optimal.

Guarantees of A*

A* is optimally efficient

a. No other tree-based search algorithm that uses the same heuristic can
expand fewer nodes and still be guaranteed to find the optimal solution.

b. Any algorithm that does not expand all nodes with 𝑓𝑓(𝑛𝑛) < 𝐶𝐶∗ (the lowest
cost of going to a goal node) cannot be optimal. It risks missing the optimal
solution.

Properties of A*

• Complete?
Yes

• Optimal?
Yes

• Time?
Number of nodes for which 𝑓𝑓(𝑛𝑛) ≤ 𝐶𝐶∗ (exponential)

• Space?
Same as time complexity. This is often too much unless a very

good heuristic is know.

Designing Heuristic Functions
Heuristics for the 8-puzzle

ℎ1(𝑛𝑛) = number of misplaced tiles
ℎ2(𝑛𝑛) = total Manhattan distance (number of squares from desired

location of each tile)

ℎ1(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) = 8
ℎ2(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) = 3 + 1 + 2 + 2 + 2 + 3 + 3 + 2 = 18

Are ℎ1 and ℎ2 admissible? 1 needs to move 3
positions

Heuristics from Relaxed Problems

• A problem with fewer restrictions on the actions is called a relaxed
problem.

• The cost of an optimal solution to a relaxed problem is an admissible
heuristic for the original problem. I.e., the true cost is never smaller.

• What relaxation is used by ℎ1 and ℎ2?
• ℎ1: If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then

ℎ1(𝑛𝑛) gives the shortest solution.
• ℎ2: If the rules are relaxed so that a tile can move to any adjacent square, then

ℎ2(𝑛𝑛) gives the shortest solution.

ℎ1(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) = 8

ℎ2(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)
= 3 + 1 + 2 + 2 + 2 + 3 + 3 + 2
= 18

Heuristics from Relaxed Problems

What relaxations are used in these two cases?

Start state

Goal state

Start state

Goal state

Euclidean distance Manhattan distance

Heuristics from Subproblems

• Let ℎ3(𝑛𝑛) be the cost of getting a subset of tiles
(say, 1,2,3,4) into their correct positions. The final order of
the * tiles does not matter.

• Small subproblems are often easy to solve.
• Can precompute and save the exact solution cost for every

or many possible subproblem instances – pattern database.

*
*
*

* *
* * *

Dominance: What Heuristic is Better?

Definition: If ℎ1 and ℎ2 are both admissible heuristics
and ℎ2(𝑛𝑛) ≥ ℎ1(𝑛𝑛) for all 𝑛𝑛, then
ℎ2 dominates ℎ1

Is ℎ1
or ℎ2 better for A* search?

• A* search expands every node with
 𝑓𝑓(𝑛𝑛) < 𝐶𝐶∗  ℎ(𝑛𝑛) < 𝐶𝐶∗ – 𝑔𝑔(𝑛𝑛)

• ℎ2
is never smaller than ℎ1. A* search with ℎ2 will expand

less nodes and is therefore better.

Example: Effect of Information in Search

Typical search costs for the 8-puzzle

• Solution at depth 𝑑𝑑 = 12
 IDS = 3,644,035 nodes
 A*(ℎ1) = 227 nodes
 A*(ℎ2) = 73 nodes

• Solution at depth 𝑑𝑑 = 24
 IDS ≈ 54,000,000,000 nodes
 A*(ℎ1) = 39,135 nodes
 A*(ℎ2) = 1,641 nodes

Combining Heuristics

• Suppose we have a collection of admissible
heuristics ℎ1, ℎ2, … , ℎ𝑚𝑚, but none of them
dominates the others.

• Combining them is easy:

ℎ(𝑛𝑛) = max{ℎ1(𝑛𝑛), ℎ2(𝑛𝑛), … , ℎ𝑚𝑚(𝑛𝑛)}

• That is, always pick for each node the heuristic that
is closest to the real cost to the goal ℎ∗(𝑛𝑛).

Satisficing Search: Weighted A* Search

• Often it is sufficient to find a “good enough” solution if it can be found very
quickly or with way less computational resources. I.e., expanding fewer
nodes.

• We could use inadmissible heuristics in A* search (e.g., by multiplying ℎ(𝑛𝑛)
with a factor 𝑊𝑊) that sometimes overestimate the optimal cost to the goal
slightly.

1. It potentially reduces the number of expanded nodes significantly.
2. This will break the algorithm’s optimality guaranty!

f 𝑛𝑛 = 𝑔𝑔 𝑛𝑛 + 𝑊𝑊 × ℎ(𝑛𝑛)

Weighted A* search: 𝒈𝒈 𝒏𝒏 + 𝑾𝑾 × 𝒉𝒉 𝒏𝒏 (𝟏𝟏 < 𝑾𝑾 < ∞)

The presented algorithms are special cases:
A* search: 𝑔𝑔 𝑛𝑛 + ℎ 𝑛𝑛 (𝑊𝑊 = 1)
Uniform cost search/BFS: 𝑔𝑔 𝑛𝑛 (𝑊𝑊 = 0)
Greedy best-first search: ℎ 𝑛𝑛 𝑊𝑊 = ∞

Example of Weighted A* Search

Weighted A* Search
𝑓𝑓(𝑛𝑛) = 𝑔𝑔(𝑛𝑛) + 5 ℎ𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑛𝑛)

Exact A* Search
𝑓𝑓 𝑛𝑛 = 𝑔𝑔(𝑛𝑛) + ℎ𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑛𝑛)

Source and Animation: Wikipedia

Breadth-first Search (BFS)
𝑓𝑓 𝑛𝑛 = # actions to reach n

Reduction in the number of expanded nodes

https://en.wikipedia.org/wiki/A*_search_algorithm

Implementation as Best-First Search
• All discussed search strategies can be implemented using Best-first search.
• Best-first search expands always the node with the minimum value of an

evaluation function 𝒇𝒇(𝒏𝒏).

• Important note: Do not implement DFS/IDS using Best-first Search!
You will get the poor space complexity and the disadvantages of DFS (not
optimal and worse time complexity)

Search Strategy Evaluation function 𝒇𝒇(𝒏𝒏)
BFS (Breadth-first search) 𝑔𝑔(𝑛𝑛) (=uniform path cost)
Uniform-cost Search 𝑔𝑔(𝑛𝑛) (=path cost)
DFS/IDS (see note below!) −𝑔𝑔(𝑛𝑛)
Greedy Best-first Search ℎ(𝑛𝑛)
(weighted) A* Search 𝑔𝑔 𝑛𝑛 + 𝑊𝑊 × ℎ(𝑛𝑛)

Summary: Uninformed Search Strategies

Algorithm Complete? Optimal? Time
complexity

Space
complexity

BFS (Breadth-
first search)

Uniform-cost
Search

DFS

IDS

b: maximum branching factor of the search tree
d: depth of the optimal solution
m: maximum length of any path in the state space
C*: cost of optimal solution

Yes

Yes

In finite spaces
(cycle checking)

Yes

If all step
costs are equal

If all step
costs are equal

Yes

No

𝑂𝑂(𝑏𝑏𝑑𝑑)

𝑂𝑂(𝑏𝑏𝑚𝑚)

𝑂𝑂(𝑏𝑏𝑑𝑑)

𝑂𝑂(𝑏𝑏𝑑𝑑)

𝑂𝑂(𝑏𝑏𝑏𝑏)

𝑂𝑂(𝑏𝑏𝑏𝑏)

Number of nodes with 𝑔𝑔 𝑛𝑛 ≤ 𝐶𝐶∗

Summary: All Search Strategies

Algorithm Complete? Optimal? Time
complexity

Space
complexity

BFS (Breadth-
first search)

Uniform-cost
Search

DFS

IDS

Greedy best-
first Search

A* Search

Yes

Yes

Yes

If all step
costs are equal

If all step
costs are equal

Yes

No

𝑂𝑂(𝑏𝑏𝑑𝑑)

Number of nodes with 𝑔𝑔(𝑛𝑛) ≤ 𝐶𝐶∗

𝑂𝑂(𝑏𝑏𝑚𝑚)

𝑂𝑂(𝑏𝑏𝑑𝑑)

𝑂𝑂(𝑏𝑏𝑑𝑑)

𝑂𝑂(𝑏𝑏𝑏𝑏)

𝑂𝑂(𝑏𝑏𝑏𝑏)

No
Worst case: 𝑂𝑂(𝑏𝑏𝑚𝑚)

Yes Yes

Best case: 𝑂𝑂(𝑏𝑏𝑏𝑏)

Number of nodes with
𝑔𝑔(𝑛𝑛) + ℎ(𝑛𝑛) ≤ 𝐶𝐶∗

In finite spaces
(cycles checking)

In finite spaces
(cycles checking)

Depends on
heuristic

Planning vs. Execution Phase

1. Planning is done by a planning function using search. The result is a plan.
2. The plan can be executed by a model-based agent function. The used model

is the plan + a step counter so the agent function can follow the plan.

S
S
S
E
…Step 2

2
3
4

Step

1
Agent’s State

(= program counter)

PlanAgent

…

Note: The agent does not use percepts or the transition function. It blindly follows the plan.
Caution: This only works in an environment with deterministic transitions.

Planning function Execution function at step 2 in the plan

…

Complete Planning Agent for a Maze-Solving Agent

Environment

Physical
Maze

Map
= Transition function +
initial and goal state

Sensors

Actuators

Plan

Planning
function

Agent
function

Counter in
plan

Physical
agent

has an event
loop:
• Read sensors
• Call agent

function
• Execute

action in the
physical
environment

• Repeat

percepts

action

Sensor input

Execute
action in the

physical
environment

State

• The event loop calls the agent function for the next action.
• The agent function follows the plan or calls the planning function if there is no plan yet or it

thinks the current plan does not work based on the percepts (replanning).

• Tree search can be used for planning actions
for goal-based agents in known, fully
observable and deterministic environments.

• Issues are:
• The large search space typically does

not fit into memory. We use a
transition function as a compact
description of the transition model.

• The search tree is built on the fly, and
we have to deal with cycles, redundant
paths, and memory management.

• IDS is a memory efficient method used
often in AI for uninformed search.

• Informed search uses heuristics based on
knowledge or percepts to improve search
performance (i.e., A* expand fewer nodes
than BFS).

Conclusion

	CS 5/7320 �Artificial Intelligence��Solving problems by searching�AIMA Chapter 3
	Contents
	Contents
	What are Search Problems?
	Remember: Goal-based Agent
	Planning for Search Problems
	Definition of a Search Problem
	Transition Function and Available Actions
	Example: Romania Vacation
	Example: Vacuum world
	Example: Sliding-tile Puzzle
	Example: Robot Motion Planning
	Contents
	Solving Search Problems
	Issue: Transition Model is Not a Tree!�It can have Redundant Paths
	Search Tree
	Differences Between Typical Tree Search and AI Search
	Tree Search Algorithm Outline
	Tree Search Example
	Tree Search Example
	Tree Search Example
	Search Strategies: Properties
	Search Strategies: Time and Space Complexity
	State Space
	Permutations
	Combinations
	Example: What is the State Space Size?
	Examples: What is the State Space Size?
	Examples: What is the State Space Size?
	Example: What is the Search Complexity?
	Examples: What is the �Search Complexity?
	Examples: What is the �Search Complexity?
	Uninformed Search
	Uninformed Search Strategies
	Breadth-First Search (BFS)
	Implementation: BFS
	Implementation: Expanding the Search Tree
	Time and Space Complexity �Breadth-First Search
	Properties of Breadth-First Search
	Uniform-cost Search �(= Dijkstra’s Shortest Path Algorithm)
	Implementation: Best-First Search Strategy
	Depth-First Search (DFS)
	Implementation: DFS
	Time and Space Complexity�Depth-First Search
	Properties of Depth-First Search
	Iterative Deepening Search (IDS)
	Iterative Deepening Search (IDS)
	Implementation: IDS
	Properties of Iterative Deepening Search
	Informed Search
	Informed Search
	Heuristic Function
	Heuristic for the Romania Problem
	Greedy Best-First Search Example
	Greedy Best-First Search Example
	Greedy Best-First Search Example
	Greedy Best-First Search Example
	Properties of Greedy Best-First Search
	Implementation of Greedy Best-First search
	Implementation of Greedy Best-First Search
	Properties of Greedy Best-First Search
	The Optimality Problem of �Greedy Best-First search
	A* Search
	A* Search Example
	A* Search Example
	A* Search Example
	A* Search Example
	A* Search Example
	A* Search Example
	BFS vs. A* Search
	Implementation of A* Search
	Optimality: Admissible Heuristics
	Guarantees of A*
	Properties of A*
	Designing Heuristic Functions
	Heuristics from Relaxed Problems
	Heuristics from Relaxed Problems
	Heuristics from Subproblems
	Dominance: What Heuristic is Better?
	Example: Effect of Information in Search
	Combining Heuristics
	Satisficing Search: Weighted A* Search
	Example of Weighted A* Search
	Implementation as Best-First Search
	Summary: Uninformed Search Strategies
	Summary: All Search Strategies
	Planning vs. Execution Phase
	Complete Planning Agent for a Maze-Solving Agent
	Conclusion

