CS5/7320
Artificial Intelligence

Solving problems
by searching

AIMA Chapter 3

Slides by Michael Hahsler

based on slides by Svetlana Lazepnik
with figures from the AIMA textbook.

This work is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License.

L=l

@7
| "‘i;ﬂ”’ -4 zx§°;

Tl
i'#;:*;reh!q iig‘v
i I I o Onlme Material

-

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Contents

What are Search Uninformed Informed

Space search search

search Tree search
problems?

Contents

What are

search
problems?

4 N

Tree search

_ J

-

_

Search
Space

~

J

4 I
Uninformed
search
N /

-

L

Informed
search

~

What are Search Problems?

* We will consider the problem of designing goal-based agents in
known, fully observable, and deterministic environments.

e Example environment:

Start

Remember: Goal-based Agent

* The agent has the task to reach a defined goal state.
* The performance measure is typically the cost to reach the goal.

* We will discuss a special type of goal-based agents called planning agents which
use search algorithms to plan a sequence of actions that lead to the goal.

)
Agents - M\m
location R .
What the world
is like now
Ds 5
; What it will be like
What t d : . =
fimnyEsiasiy) if I do action A é
Map of S
Search B
the maze for a plan G
What z;ction 1 -
should do now
Exit *

location ¥Ageﬂt

Actuators TL/

ag = argminaeA[cost(s, S1,52, ...,Sn|Sn € Sgoal)]

Planning for Search Problems

* For now, we consider only a discrete Initial state
environment using an atomic state ‘
representation (states are just labeled 1, 2, 3,

)

* The state space is the set of all possible states of
the environment and some states are marked as
goal states.

* The optimal solution is the sequence of actions
(or equivalently a sequence of states) that gives
the lowest path cost for reaching the goal.

. Goal

state

Phases:

1) Search/Planning: the process of looking for the sequence of actions that reaches a
goal state. Requires that the agent knows what happens when it moves!

2) Execution: Once the agent begins executing the search solution in a deterministic,
known environment, it can ignore its percepts (open-loop system).

Definition of a Search Problem

Initial state Actions: {N, E, S, W}
‘ Transitions —

* Initial state: state description
* Actions: set of possible actions 4

* Transition model: a function that
defines the new state resulting from
performing an action in the current
state

* Goal state: state description
e Path cost: the sum of step costs

Important: The state space is typically too large to be enumerated, or it is
continuous. Therefore, the problem is defined by initial state, actions and the
transition model and not the set of all possible states.

Transition Function and Available Actions

* As an action schema:
Action(go(dir))
Original Description PRECOND: no wall in direction dir
EFFECT: change the agent’s location according to dir
Initial state Actions: {N, E, S, W} . Aq 3 function:

‘ Transitions —» fiSXA - Sors' =result(a,s)

» Function implemented ||EIIEIER
1 s 2

as a table representing
the state space

as a graph. 5 N 1
2 S 3
4 E a
4 S 5
4 N 3

Goal state « Available actions in a state come/from the
transition function. E.g.,
actions(4) = {E,S,N}

Note: Known and deterministic is a property of the transition function!

Example: Romania Vacation

e Onvacation in Romania; currently in Arad S
* Flight leaves tomorrow from Bucharest !! '

* |nitial state: Arad

* Actions: Drive from
one city to another.

* Transition model
and states: If you go
from city A to city B,
you end up in city B.

* Goal state: Bucharest

* Path cost: Sum of
edge costs.

'~ UKRAINE

Original Descrlptlon

T| misoara

= Ciradea

State Space/Transition model

Defined as a graph

Distance

Eforie

in miles

Example: Vacuum world AT

State Space] CJ : 3 R
eyl P 038

- R —

GoalstatesL[E‘Q‘ ‘dﬂ ¥

))

* Initial State: Defined by agent location and dirt location.

* Actions: Left, right, suck :
There are 8 possible

* Transition model: Clean a location or move. atomic states of the
* Goal state: All locations are clean. SR

Why is the number of
* Path cost: E.g., number if actions states for n possible

locations n(2™)?

Example: Sliding-tile Puzzle

* Initial State: A given configuration.

* Actions: Move blank left, right, up, down

* Transition model: Move a tile

* Goal state: Tiles are arranged empty and 1-8 in order

* Path cost: 1 per tile move.

State space size

Each state describes the location of each tile (including the
empty one). % of the permutations are unreachable.

* 8-puzzle: 9!/2 = 181,440 states

* 15-puzzle: 16!/2 =~ 1013 states

» 24-puzzle: 25!/2 =~ 102> states

3

Start State

4

7

Goal State

Example: Robot Motion Planning

8 (A .

* Initial State: Current arm position.

* States: Real-valued coordinates of robot joint angles.

* Actions: Continuous motions of robot joints.

* Goal state: Desired final configuration (e.g., object is grasped).

* Path cost: Time to execute, smoothness of path, etc.

Contents

4 N

What are
search
problems?

J

o

Tree search

-

_

Search
Space

~

J

4 I
Uninformed
search
N /

-

L

Informed
search

~

Solving Search Problems

Given a search

problem definition How do we find the
e Initial state optimal solution
5 A (sequence of
e Transition model actions/states)?

¢ Goal state
e Path cost

Initial state

State space °*

Construct a
search tree

for the state
space graph!

Tt
-

S

Goal states L[

Issue: Transition Model is Not a Tree!
It can have Redundant Paths

Cycles

Return to the same state. The search tree will create a new node!

Initial state

=)
o |ax

¢

LQ;@

L3

¢

O

Goal states Lg ‘dﬂ

R —]
oFR
JD Non-cycle redundant paths

Multiple paths to get to the same state

Initial state

S

S
Goal states LC e
£

Search Tree

Superimpose a “what if” tree of possible actions
and outcomes (states) on the state space graph.

The Root node represents the initial stare.

An action child node is reached by an edge
representing an action. The corresponding state
is defined by the transition model.

Trees cannot have cycles (loops) or multiple
paths to the same state. These are called
redundant paths. Cycles in the search space
must be broken to prevent infinite loops.
Removing other redundant paths improves
search efficiency.

A path through the tree corresponds to a
sequence of actions (states).

A solution is a path ending in a node
representing a goal state.

Nodes vs. states: Each tree node represents a
state of the system. If redundant path cannot be
prevented then state can be represented by
multiple nodes.

Root node =
Initial state

Edge = Action

Child node

Non-cycle

@ redundant

AYA

Solution path

6 Node representing
a Goal state

Differences Between Typical Tree Search and
Al Search

Typical tree search Al tree/graph search
* Assumes a given tree that fits * The search tree is too large to fit into
in memory. memory.

a. Builds parts of the tree from the
initial state using the transition
function representing the graph.

b. Memory management is very

important.
* Trees have by construction no * The search space is typically a very
cycles or redundant paths. large and complicated graph.

Memory-efficient cycle checking is
very important to avoid infinite loops
or minimize searching parts of the
search space multiple times.

* Checking redundant paths often
requires too much memory and we
accept searching the same part
multiple times.

Tree Search Algorithm Outline

1. Initialize the frontier (set of unexplored know nodes)
using the starting state/root node.

2. While the frontier is not empty:

a) Choose next frontier node to expand according to
search strategy.

b) If the node represents a goal state, return it as the
solution.

c) Else expand the node (i.e., apply all possible actions to
the transition model) and add its children nodes
representing the newly reached states to the frontier.

Tree Search Example

- Frontier

. — o e —_— o=
__..-—_"_'_H T H_‘_H"—"—-—
-—-—-"-—..'_._ o i —-——
-‘:_ Shiu ,_:‘:' qimimal_a:} < Faiind Ty
T e
P A AN
-l":_____lad] l':_agalasq‘fr "":_Olaclaa‘_:} -!"B_'l:nri-:l.l".-'l-:_e'-._:l_'"‘:l f‘:__:‘l"uacl ¥ -"':___Lug i Ty l":____ﬁljacl ‘_:'} -’:___Dla:la.;}__

Tree Search Example

CArd > 1. Expand Arad

m N

i \:H T -~ * A
—_— - ., T o “ # .
—— L . . T — N — L S
LAad > CFagaras b CQmdead Qmniandesd C_Ard 5 _Luge b C_Amd 5 Oradea
- - - ~ - ~ I T T - - L ¢ -~ - .

Tree Search Example

Amd

Frontier

........... imisoara

Example of
a cycle

We could have
also expanded
Timisoara or
Zerind!

Search Strategies: Properties

* A search strategy is defined by picking the order of node
expansion.

e Strategies are evaluated along the following dimensions:
* Completeness: does it always find a solution if one exists?
* Optimality: does it always find a least-cost solution?
* Time complexity: how long does it take?
e Space complexity: how much memory does it need?

Search Strategies: Time and Space Complexity

» A search strategy is defined by picking the order of node
expansion.

* Worst case time and space complexity are measured in terms of
the size of the state space n (= number of nodes in the search

tree).
O(n)

e Often used metrics if the state space is only implicitly defined by
initial state, actions and a transition function are:

* b: maxi)mum branching factor of the search tree (number of available
actions).

* m: length of the longest path (loops need to be removed).
* d: depth of the optimal solution.

n=f(d,m,b)= 0(f(d,m,b))

State Space

* Number of different states the agent and environment State representation
can bein.
* Reachable states are defined by the initial state and the
transition model. Not all states may be reachable from ®x; °
the initial state. 0%z S
* Search tree spans the state space. Note that a single B—=C '_ ’_
state can be represented by several search tree nodes if — i
we have redundant paths. B c
 State space size is an indication of problem size.) Atomic b Factored
State Space Size Estimation The state consists of
variables called fluents
that represent
* Even if the used algorithm represents the state space Sl as e 2
using atomic states, we may know that internally they change over time.

have a factored representation that can be used to
estimate the problem size.

* The basic rule to calculate (estimate) the state space size
for factored state representation with [fluents
(variables) is:

n =X X [X;] X - % |X]

where || is the number of possible values.

4 rTV TRy,

' b
| PERMUTATIONS §

T I A TR
)

Y OROER DOES mMaTTER
I
WiTHour
WITH REPET[TIONS
LEPETITIONS 2
Firgd “‘M %
@ Lodk password poofle n
e o rate

A\ Tt e ren cn e e s e ey

In how many ways can we
order/arrange n objects?

P T .

L4 A5}
o it o, Bask
{b.q:‘i {'S #\ ' .:: a3
R A e —= Laeeh
—| 1A
! ' Th,e 8y
2x2=22=4_ 188 L ®Y
Lo ny E XAMPLY }—» (o Ay [3X2Xx1=6
i(}.l'&'\ {GI"\‘-]A'\
ER fo,0,0Y

Factorialn!=nx(n—1)x--x2x1

Dﬂr e | ﬂj \ #Python
PEQMUTmmtﬂg/

import math

o mumbec -&- LI
N - number of aghinns

—_— print (math.factorial(23))

Source: Permutations/Combinations Cheat Sheets by Oleksii Trekhleb
https://itnext.io/permutations-combinations-algorithms-cheat-sheet-68c14879aba5

https://itnext.io/permutations-combinations-algorithms-cheat-sheet-68c14879aba5

%“‘\’\ RO m\w\w

; COMBINATIONS

e A S T G Sy St N

ORbER DUES NOT m\wc.a. 3

e WITHOUT
e LEPETITIONS

WO

(LTI

WITH

REPETITIONS

S F\:r‘u\'\ SUQ.U.& Wgfed i
@@ Coins in_vpur p_m)mf o ,.._..P__———-‘O . 9%1% %"
Ly,55 LQ,*-Q'IB g WoRWw { banwna , Oy
1,8 N s i apele, Qrared

A
a0

. . . . n
ARy — TAAY 4“__ el — LAy . Binomial Coefficient: (r) =C(nr)= ,C,
;’:\‘:: Fraaee e) S Read as “n choose r” because it is the number
i%.%\ IO of ways can we choose r out of n objects?
CA Special case forr = 2: (n) S,
{eeh : 2 2

-_—

NumBEQ
oF

COME INATIO NS

#Python

import scipy.special
7 rumbse, of stats
n T nnmber of options

the two give the same
results
scipy.special.binom(10, 5)
scipy.special.comb(10, 5)
Source: Permutations/Combinations Cheat Sheets by Oleksii Trekhleb
https://itnext.io/permutations-combinations-algorithms-cheat-sheet-68c14879aba5

https://itnext.io/permutations-combinations-algorithms-cheat-sheet-68c14879aba5

Example: What is the State Space Size?

A ; B
00 =)

O

== 0250

Dirt

* Permutation: A and B are different rooms, order

does matter!

* With repetition: Dirt can be in both rooms.
* There are 2 options (clean/dirty)

— 22

Robot location

e Canbein 1 outof2rooms.
- 2

Total: n=2x2%2=23=

S

%
]

&
3,

20

%

03

£

2
L [E] X] =

080 080
SEENEENE N

LEVETITIONS

@ Lode passwerd
LLa56)

1543

fagy — Ta 0y
{8}
Loy
Lo By

r.. # of rooms

n ... options

(D)

.)
‘\L\\‘\\\\\‘\‘-ﬂ‘\".\“&\‘%

{ PEAMUTATIONS |

S S T Rt

ORoRR DOES maTRR

AT ERee R e e ey

Witour
REPET ITI0NS

Fird thear 9 i’

P%ﬂl \n
REBL o raw
V;-of:!‘\:\vﬁ‘. { Smu“h\?)fo\nln L Q)\ndkp[\

41 41 %

st = nech

A, e 8y
Lo n®)
@—' Lo Aeh
Lo by
{Q)Qz,h'\

NUMBER OF "\ \ n l

T aumbec of A8
M= number of aghined

T TTe—

Examples: What is the State Space Size?

Often a rough upper limit is sufficient to determine how hard the search problem is.

Examples: What is the State Space Size?

Often a rough upper limit is sufficient to determine how hard the search problem is.

All arrangements
of 9 elements.

All arrangements with
8 queens on the

Positions the agent
can be in.

All possible boards.

| board. : : n < 3% =19,683
n = Number of E E n <9! E
white squares. 'n < 2%~ 1.8x1017 ' Many boards are not
E E Half is E legal (e.g., all x’s)
' We can only have 8 ' unreachable: !
| queens: | _ 9! _ i The actual number can be
'n = (684) ~44%x10° ¢ T2 T 181,440 ! obtained by a depth-first

traversal of the game tree.

Example: What is the Search Complexity?

* b: maximum branching factor State Space with Transition Model
= number of available
actions? Initial state

e =

3 .

* m: the number of actions in el T B U [e 2
any path? Without loops! “ T
Goalstateé[]“q R |AQ']R
4 SO

* d: depth of the optimal
solution?

3

E)(a m p | es: Wh at |S th e b: maximum branching factor

m: max. depth of tree

Sea rCh CO m p | exrty? d: depth of the optimal solution

Often a rough upper limit is sufficient to determine how hard the search problem is.

b =
m
d

Examples: What is the T
Search Complexity?

Often a rough upper limit is sufficient to determine how hard the search problem is.

d: depth of the optimal solution

b = 4 actions b =? What are the b = 4 actions to move b = 9 actions for the

— longest path to the actions? Moving one the empty tile. first move.
= ? Moving e
goal or a dead end Queen: 64 —7 =57 m =Tryall 0(9!) m
(bounded by x X y) m = We may have to d =277 d = 9 (if both play
L (64 o 9 .
d = shortest path to tryall: (%) ~ 4.4 x 10 optimal)

the goal (bounded by
X Xy)

d = move each queen
in the right spot = 8

Uninformed Search

«?»
X3

Uninformed Search Strategies

The search algorithm/agent is not provided information about how
close a state is to the goal state. It just has the labels of the atomic
states and the transition function.

It blindly searches following a simple strategy until it finds the goal
state by chance.

Search strategies we will discuss:

Breadth-first search
Depth-first search

Iterative deepening search

Breadth-First Search (BFS)

Expansion rule: Expand shallowest unexpanded node in the frontier
(=FIFO).

>@ @

® ® r ¢ »® ® ® ©

Figure 3.8 Breadth-first search on a simple binary tree. At each stage, the node to be ex-
panded next is indicated by the triangular marker.

Data Structures

* Frontier data structure: holds references to the green nodes (green) and is
implemented as a FIFO queue.

* Reached data structure: holds references to all visited nodes (gray and green)
and is used to prevent visiting nodes more than once (redundant path checking).

e Builds a tree with links between parent and child.

Implementation: BFS

function BREADTH-FIRST-SEARCH(problem) returns a solution node or failure
node <— NODE(problem.INITIAL)
if problem.1S-GOAL(node.STATE) then return node
frontier +—a FIFO queue, with node as an element
reached < { problem .INITIAL}
while not [S-EMPTY(frontier) do Expand adds the next level
node < POP(frontier) below node to the frontier.
for each child in EXPAND(problem, node) do
s ¢— child .STATE
if problem.I1S-GOAL(s) then return child
if s is not in reached then

add s to reached reached makes sure we do not

adq child to frontier visit nodes twice (e.g., in a
return failure

cycle or other redundant path).

Fast lookup is important.

37

Implementation: Expanding the Search Tree

Al tree search creates the search tree while searching.

* The EXPAND function tries all available actions in the current node
using the transition function (RESULTS). It returns a list of new nodes
for the frontier.

Node structure for
the search tree.

function EXPAND(problem, node) yields nodes Yield can also be

5 < node.STATE Tz el s implemented by
for each action in problem.ACTIONS(s) dg function
s" < problem RESULT(s, action

returning a list of
Nodes.

cost < node. PATH-COST + problem.ACTION-COST(s, actiof.

vield NODE(STATE=s’, PARENT=node, ACTION=action, PATH-COST=cost)

d: depth of the optimal solution

Time and Space Complexity P e
Breadth-First Search

b: maximum branching factor

go)
Q
2
_d=1
—_ (g0}
b=2 S
)
m=3
Goal
_ "’/ \~\‘ ’4’, \\‘\
b s ~
~~~~~~ & R, m2”” TN
(D (E (F (G
______ \ )\~___, \s\__‘, S
\\ ,/
\ S
\* . y
< s i \;k
{ E { C ) Goal
\ /

All paths to the depth of the goal are expanded:
1 +b+b%2+ ..+ b% =00



Properties of Breadth-First Search

5 d: depth of the optimal solution
* Complete: m: max. depth of tree

Yes b: maximum branching factor

* Optimal?
Yes — if cost is the same per step (action). Otherwise: Use uniform-cost search.

* Time?
Number of nodes created: 0(b%)

* Space?
Stored nodes: 0(b%)

Note:
* The large space complexity is usually a bigger problem than time!



Uniform-cost Search
(= Dijkstra’s Shortest Path Algorithm)

* Expansion rule: Expand node in the frontier with the least path cost from the initial state.

* Implementation: best-first search where the frontier is a priority queue ordered by lower f(n) =
path cost (cost of all actions starting from the initial state).

. Breadlth—first search is a special case when all step costs being equal, i.e., each action costs the
same!

* Complete? d: depth of the optimal solution

Yes, if all step cost is greater than some small positive constant € > 0 m: max. depth of tree
b: maximum branching factor

e Optimal?
Yes — nodes expanded in increasing order of path cost

* Time?
Number of nodes with path cost < cost of optimal solution (C*) is O(b1*"7 ).

This can be greater than O(bY): the search can explore long paths consisting of small steps before exploring
shorter paths consisting of larger steps

Space?
O(b1+C*/e)

See Dijkstra's algorithm on Wikipedia



https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

Implementation: Best-First Search Strategy

function UNIFORM-COST-SEARCH( problem.) returns a solution node, or failure
return BEST-FIRST-SEARCH(problem., PATH-COST)

/

function BEST-FIRST-SEARCH(problem, f) returns a solution node or failure

node +— NODE(STATE=problem.INITIAL)
frontier < a priority queue ordered by £, _with node as an element
reached < a lookup table, with one entry wi 0roblem. INITIAL and value node

while not IS—EMPTY(frontéer} do The order for expanding the
node < POP( frontier) .. )
. frontier is determined by
if problem.1S-GOAL(node.STATE) then return node ~ H ¢ H
for each child in EXPAND(problem, node) do f(n)_ L) EREE SN Wi
initial state to node n.

5 < child.STATE
if s is not in reached or child. PATH-COST < reached|s|.PATH-COST then

reached|s] < child
add child to frontier

return failure This check is the difference

to BFS! It visits a node again
if it can be reached by a
better (cheaper) path.

See BFS for function EXPAND.



Depth—Fi rst B c ® = © @' O
Search (DFS) » = * ¢ » = © © 2@ © * ¢

e Expansion rule: A A A
Expand deepest j-§ © p-§ © @ ©
unexpande ® ® f ¢ @& ® F G PO F G
nOde-In the ’v@ @ I K L M N O P@ Jo K L M (N (O T, K Ly M N [0
frontier (last : i ' '
added). 8 @ @

* Frontier: stack @ @ O & S
(LIFO) Q\b . e ® ®

E F G E) F G F G

* No reached data ) _
structure! PO® L M N 0O PO L M N O L M N ©
Cycle checking a__ @ @
checks onlyhthe ) © Q
current patn. O a0 P

P P& © ® © ® ©
Redundant paths L M N © >O @ N o P@ N 0
Cda n nc_)ft t()je d Figure 3.11 A dozen steps (left to right, top to bottom) in the progress of a depth-first search
identitied a n on a binary tree from start state A to goal M. The frontier is in green, with a triangle marking
lead to repllcated the node to be expanded next. Previously expanded nodes are lavender, and potential future
work. nodes have faint dashed lines. Expanded nodes with no descendants in the frontier (very faint

lines) can be discarded.



Implementation: DFS

* DFS could be implemented like BFS/Best-first search and just taking the last
element from the frontier (LIFO).

* However, to reduce the space complexity to O(bm), the reached data structure
needs to be removed! Options:

+Recursive-implementation (cycle checking is a problem leading to infinite loops)

* Iterative implementation: Build tree and abandoned branches are removed from memory.
Cycle checking is only done against the current path. This is similar to Backtracking search.

®  DFSusesf = o

function DEPTH-LIMITED-SEARCH( problem, ) returns a node or failure or cutoff
frontier < a LIFO queue (stack) with NODE(problem.INITIAL) as an element
result < failure
while not [S-EMPTY( frontier) do If we only keep the current path from
node +— POP(ﬁ"ont*a'er] the root to the current node in

if problem.1S-GOAL(node.STATE) then return node memory, then we can only check
if DEPTH(node) > ¢ then against that path to prevent cycles, but
result +—— cut;o_ﬁ” | we cannot prevent other redundant

. paths. We also need to make sure the
else if not IS-CYCLE(node) do frontier does not contain the same

fOI’ EEICh (‘h’&ﬂd iIl EXPAND(pTObZSﬂL- ﬂOdB} dﬂ state more then Once!
add child to frontier
return result

See BFS for function EXPAND.



d: depth of the optimal solution

Time and Space Complexity e i it 72
Depth-First Search

b: maximum branching factor

-
/\ Goal

Goal « DFS finds this goal first < Not optimal!

* Time: O(b™) — worst case is expanding all paths.
* Space: O(bm) - if it only stores the frontier nodes and the current path.



Properties of Depth-First Search

 Complete?

* Only in finite search spaces. Cycles can be avoided by checking for repeated states
along the path.

* Incomplete in infinite search spaces (e.g., with cycles).

o Optimal? d: depth of the optimal solution
No — returns the first solution it finds. m: max. depth of tree

b: maximum branching factor

* Time?

The worst case is to reach a solution at maximum depth m in the last path: O(b™)
Terrible compared to BFS if m > d.

* Space?

O(bm%‘is linear in max. tree depth m which is very good but only achieved if no
reached data structure and memory management (forget old branches) is used!
Cycles can be broken but redundant paths cannot be checked.



Iterative Deepening Search (IDS)

Can we
a) get DFS’s good memory footprint,
b) avoid infinite cycles, and
c) preserve BFS’s optimality guaranty?

Use depth-restricted DFS and gradually increase the depth.

Check if the root node is the goal.

Do a DFS searching for a path of length 1

If goal not found, do a DFS searching for a path of length 2
If goal not found, do a DFS searching for a path of length 3

Lk wneE



Iterative
Deepening
Search
(IDS)

limit: 1 2<)
B C [>2
limit- 2 >@
E c
O E F D E F G L= F G F G
F E\@ @\%
limit: 3 >®
E c
i E F )] E F G F G
H I I E L MN

o I K (L) M N O
o L. ‘M ‘N O




Implementation: DS

function ITERATIVE-DEEPENING-SEARCH( problem) returns a solution node or failure

for depth =0 to oo do
result <— DEPTH-LIMITED-SEARCH( problem. depth)

if result # cutoff then return result

function DEPTH-LIMITED-SEARCH( problem. (') returns a node or failure or cutoff
frontier < a LIFO queue (stack) with NODE(problem.INITIAL) as an element

result < failure
while not [S-EMPTY( frontier) do

node <— POP(frontier)
if problem.1S-GOAL(node.STATE) then return node

if DEPTH(node) > ( then
result +— cutoff
else if not IS-CYCLE(node) do
for each child in EXPAND(problem, node) do
add child to frontier
return result

See BFS for function EXPAND.



Properties of Iterative Deepening Search

¢ CompIEte? d: depth of the optimal solution
Yes m: max. depth of tree

b: maximum branching factor

e Optimal?
Yes, if step cost = 1 (like BFS)

* Time?
Consists of rebuilding trees up to d times
db + (d—1)b% + ... + 1b% = 0(b%) < Slower than BFS, but the same complexity class!

e Space?
O(bd) < linear space. Even less than DFS since m < d. Cycles need to be handled by the
depth-limited DFS implementation.

Note: IDS produces the same result as BFS but trades better space complexity for
worse run time.

This makes IDS/DFS the

workhorse of Al.







Informed Search

* Al search problems typically have a very large search space. We would like to
improve efficiency by expanding as few nodes as possible.

* The agent can use additional information in the form of “hints” about what
promising states are to explore first. These hints are derived from

* information the agent has (e.g., a map with the goal location marked) or
* percepts coming from a sensor (e.g., a GPS sensor and coordinates of the goal).

* The agent uses a heuristic function h(n) to rank nodes in the frontier and
always select the most promising node in the frontier for expansion using
the best-first search strategy.

e Algorithms:
* Greedy best-first search
e A* search



Heuristic Function

* Heuristic function h(n) estimates the cost of reaching a node representing
the goal state from the current node n.

e Examples:
Euclidean distance Manhattan distance
Start state Start state

Goal state Goal state



Heuristic for the Romania Problem

Estimate the driving distance from Arad to Bucharest using a straight-line distance.

Straight-line distance

Eforie 151
IFagaras 174
Giurgiu T
Hirsova 151
Ias 2126
Lugoj 244
MMehadia 241
Meamt 134
Oradea 180
Pitesth 10
Rimnikcu Vikea |03
Sibiu 153
Timisoara 119
Urziceni %]
Vashn 199

Zerind 174



Greedy Best-First Search Example

Expansion rule: Expand the
node that has the lowest value
of the heuristic function h(n)

h(n

o e
Cralova
Dobreta
Eforie
Fagaras
Giurgiu

Hirsova

Pitesh

Rimnicu Vikea
Sibiu
Timisoara
Urziceni
Vashui

Zerind

193

9



Greedy Best-First Search Example

=

' ir;limaja T

253 Iz a4

Straight-line distance

© Buchamst

Arad W
Bucharest Q
Cralova 160
Dobreta 242
Eforie 151
Fagaras L7&
Giurgiu 77
Hirsova 151

Iasi




Greedy Best-First Search Example

CAed o

™, ——

< Sk >

el EES) 74

Straight-line distance

© Buchamst

Arad W
Bucharest Q
Cralova 160

[] Yaslui

i
) Hirsova Rimnicu Vikea 93

75 Sibiu 53
Timisoara L]

Dobreta Urziceni 80
Efarie ".’E]“i 199

i clurgiu Ferind 174



Greedy Best-First Search Example

< Sbiu
s
366 ™ 380 193
S,
s .,
C Sbiu_DpCuchae=D
253 a

Total:
140 + 99 + 211 = 450 miles

=

. o
imisoara

Iz

a4

Straight-line distance

© Buchamrst
Arad
Bucharest
Cralova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
Iasi

Pitesh

Rimnicu Vikea
Sibiu
Timisoara
Urziceni
Vashui

Zerind

166

0
160
242
161
176
151
226
244
241
234

10
193
153
9

199
a4



Properties of Greedy Best-First Search

 Complete?
Yes — Best-first search if complete in finite spaces.

* Optimal?
No

Total:

140 + 99 + 211 =450 miles

Alternative through Rimnicu Vilcea: ™
140 + 80 + 97 + 101 = 418 miles

Straight-line distance

© Buchamrst
Arad
Bucharest
Cralova
Dobreta
Eforie
Fagaras
Giurgiu

Hirsova

Pitesh

Rimnicu Vikea
Sibiu
Timisoara
Urziceni
Vashui

Zerind

]

Q
L&0
242
lal
17&

151
225
244
241
234

10
193

153
9

199
a4



Implementation of Greedy Best-First search

BeSt-F|rSt Expand the frontier

using

Search f(n) = h(n)




Implementation of Greedy Best-First Search

Heuristic h(n) so we expand the node with the lowest estimated cost

T~

function BEST-FIRST-SEARCH(problem, f) returns a solution node or failure
node +— NODE(STATE=problem.INITIAL)
frontier < a priority queue ordered by f._with node as an element
reached < a lookup table, with one entry wilTT™agggroblem . INITIAL and value node
while not [S-EMPTY(frontier) do

node < POP( frontier)
if problem.1S-GOAL(node.STATE) then return node

for each child in EXPAND(problem. node) do

5 < child.STATE
if s is not in reached or child. PATH-COST < reached|s|.PATH-COST then

reached|s] < child
add child to frontier
return failure

The order for expanding the

frontier is determined by

fin)

This check is the different to

BFS! It visits a node again if it
can be reached by a better
(cheaper) path.

See BFS for function EXPAND.



Properties of Greedy Best-First Search

* Complete?
Yes — Best-first search if complete in finite spaces.

I ?
° Optlmal : d: depth of the optimal solution
No m: max. depth of tree

b: maximum branching factor

* Time?
Worst case: O(b™) < like DFS
Best case: O(bm) — If h(n) is 100% accurate we only expand a
single path.

* Space?
Same as time complexity.



The Optimality Problem of
Greedy Best-First search

Greedy best-first search only considers the estimated cost to the goal.

h=2

h=1 h=1 h=1 h=1 h=1

Initial
Goal

State

h = 1 is always better than h = 2.

Greedy best-first will go this way
and never reconsider!




A" Search O
g Qm_

Initial
State

* Idea: Take the cost of the path to n called g(n) into account to avoid
expanding paths that are already very expensive.

* The evaluation function f(n) is the estimated total cost of the path
through node n to the goal:

f(n) = gn) + h(n)

g(n): cost so far to reach n (path cost)

h(n): estimated cost from n to goal (heuristic)

* The agent in the example above will stop at n with f(n) = 3 + 1 = 4 and chose
the path up with a better f(n’) =1+ 2 = 3.

Note: For greedy best-first search we just used f(n) = h(n).



A" Search Example

Expansion rule: f(n) = g(n) + h(n) = sesces
Expand the node with
the smallest f(n)

h(n)

Straight-line distance

M) (=
iy

B iaTes i}

Craiova L&D

Dobreta 247

Eforie 161

Fagaras 176

Giurgiu T7

Hirsova 151

Iasi 2176

Lugoj 244
Mehadia 241

Meamt 234

Oradea =0

Pitesti [Ts]
QHISVE pimnicu Vikea 103
Sibiu 53
Timisoara 179

Urziceni /0

Eforie  Vashii 199

Zerind 1374



A" Search Example

- f(m) = g(n) + h(n)

T . ——

393=140+253 H7=118+329 448=T5+374

h(n)

Straight-line distance

© Buchamst

Arad 55
EI.E']'I.EI‘EE" ]
Craiova L&D
Dobreta 247
Torie 161
Fagaras 176
Giurgiu 7
Hirsova 151
Iasi 2176
Lugoj 244
MMehadia 241

Zerind 174




A" Search Example

S fn) = g(n) + h(n)

P '-\.__ e

c:—:>

— \""-— H7=118+329 448=T5+374

G46=280+366 H15=239+176 &71= 291-!-350

sy
{Clalcwa) ( F‘Itash ¥ { Sblu ¥y

526=366+180 417=317+100 553=300+253

h(n)

Straight-line distance

© Buchamst

Arad W
Bucharest Q
Cralova 160
Dobreta 242
Eforie lal
Fagaras L7&
Giurgiu 7
Hirsova 151
Iasi 226
Lugoj 244
MMehadia 241
MNeamt 234
Oradea 350
Pitesh 10
Rimnicu Vikea 93
Sibiu 53
Timisoara 319
Urziceni a0
Vashui 199

Zerind 174



A" Search Example

- f(m) = g(n) + h(n)

L . —

=D

— N 447=118+320 e

G46=280+366 4+15=239+176 E71=201+380 413=220+193

h(n)

Straight-line distance

© Buchamrst

Arad 55
EI.E']'I.EI‘EE" ]
Craiova L&D
Dobreta 247
Torie 161
Fagaras 176
Giurgiu 7
Hirsova 151
Iasi 2176
Lugoj 244
Mehadia 241
NE\EI'I'I"‘ 134
Oradea 180
“ ES) . ('
Timisoara 39
Urziceni /0
Vaslui 199

Zerind 174



A" Search Example

S fn) = g(n) + h(n)

P '-\.__ —

=

N 447=118+320 4T—TE AT

’

G46=280+3566 _,’ “\x G71= 2914.350

{ Sbiu 3 {Euchalaﬁ} e Elabu’a }D'C._E.EE.D  Sbiu
591=338+253 450=450+0 526=366+160 417=317+100 553=300+253

h(n)

Straight-line distance

© Buchamrst

Arad 54
Cralova L&D
MI‘E“"E 432
Tforie 161
Fagaras 176
Giurgiu 7
Hirsova 151
Iasi 275
Lugoj 244
MMehadia 141
MNeamt 34
Oradea 1m0
Pitesh 10
Rimnicu Vikea 93
Sibiu 253
Timisoara 319
Urziceni W)
Vashai 199

Zerind 174



A" Search Example

f() =g) + h(n)

=

— \"---___ H7=118+329 448=T5+374

m

G46=280+3566 /’ '\x 5?1 291-!-350

591=3384253  450=45040 EEE_EEE+1EU | - 553=300+253

PETD T @D

418=418+0 &15=455+160 GO7T=414+193

h(n)

Straight-line distance

© Buchamst

Arad W6
Bucharest Q
Craiova &0
Dobreta 242
Eforie lal
Fagaras 176
Giurgiu 77
Hirsova 151
Iasi 2176
Lugoj 244
MMehadia 241
MNeamt 234
Oradea 350
Pitesh 10
Rimnicu Vikea o3
Sibiu 53
Timisoara ]
Urziceni )
Vashai 199

Zerind 174



BFS vs. A* Search

/\*

Source: Wikipedia

BFS

/\*

=T EEEREEEREREEEE R

A SRS S SRS 2R 2 8 ReRogel
R ERRRRRRRRRRRR R 0D
2 S S22 RS R RN E S
23 2SS s sss n E RaE R S J

t-*-:ﬁdddtddﬁ et

L2 3 3 .
e+ 90000000 e 222
 E s S X S SRS S X o 2 F ¥
AR S o = 5 ¥
2 2 2 32 3222222 s 2 3 3
22 2 222222 2 ¥ S XX ¥
T TETETERRTY I I DR R R Y
2 2 2 23232222222 EE RS S
Lt tatadadatadadadadad i dododedadnd
Snttdan’ | LBARBsRR
iunttuostuiltiniiiu:
BB BB BB BB B RE RS
N SR R EEEEEEEEEET
SR BR BB BB BB BRER TS
Doan
e X+ R0l X+
i+ B0 B+
L EVY ¥
Gao o 2 ¥
GO 990000008 80
ﬂli!ttt!t**nz 3 ¥ ¥
E+X 2 S 2 2 2 X & X 5 - i i
XTI EEEEER Y 2 3 R+
TEXEEEEEEEER Y -RO0
ri:ﬂﬁ!ﬁﬂualtipt w0
R R 2 R E 3 A )
r!iﬂiiﬂlliitiiiiﬂﬂ
E 2R R EEEE R R R R ReEs
222 R R E R E R E R Rebs
E E R EEEEE R R R R B
IR LEERERBERBEROD
T T XX TETEETE ReloRsl


https://en.wikipedia.org/wiki/A*_search_algorithm

Implementation of A* Search

Path cost to n + heuristic from n to goal = estimate of the total cost
g(n) + h(n)

/

function BEST-FIRST-SEARCH(problem, f) returns a solution node or failure
node +— NODE(STATE=problem.INITIAL)
frontier <— a priority queue ordered by f. with node as an element
reached < a lookup table, with one entry with rohlemn. INITIAL and value node
while not [S-EMPTY(frontier) do
The order for expanding the

node <— POP(frontier)
if problem.1S-GOAL(node.STATE) then return node frontier is determined by
f(n)

for each child in EXPAND(problem. node) do

5 < child.STATE
if s is not in reached or child. PATH-COST < reached[s].PATH-COST then

reached|s] < child
add child to frontier
return failure

This check is different to
BFS! It visits a node again if it
can be reached by a better
(cheaper) redundant path.

See BFS for function EXPAND.



Optimality: Admissible Heuristics

Definition: A heuristic h is admissible if for every node n,
h(n) < h*(n), where h*(n) is the true cost to reach the goal
state from n.

l.e., an admissible heuristic is a lower bound and never
overestimates the true cost to reach the goal.

Example: straight line distance never overestimates the actual
road distance.

Theorem: If h is admissible, A" is optimal.



Guarantees of A*

A* is optimally efficient

a. No other tree-based search algorithm that uses the same heuristic can
expand fewer nodes and still be guaranteed to find the optimal solution.

b. Any algorithm that does not expand all nodes with f(n) < C* (the lowest
cost of going to a goal node) cannot be optimal. It risks missing the optimal

solution.



Properties of A*

* Complete?
Yes

* Optimal?
Yes

* Time?
Number of nodes for which f(n) < C* (exponential)

e Space?
Same as time complexity. This is often too much unless a very
good heuristic is know.



Designing Heuristic Functions

Heuristics for the 8-puzzle
h,(n) = number of misplaced tiles

h,(n) = total Manhattan distance (number of squares from desired
location of each tile)

7 2 4 1 2
5 6 3 4 5
8 3 1 6 7 8
Start State Goal State
h,(start) = 8
h,(start) = 3+1+2+2+2+3+3+2 =18

Are h, and h, admissible?  needs tomove 3

positions



Heuristics from Relaxed Problems

* A problem with fewer restrictions on the actions is called a relaxed
problem.

* The cost of an optimal solution to a relaxed problem is an admissible
heuristic for the original problem. l.e., the true cost is never smaller.

* What relaxation is used by h; and h,?
* hy: If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then
h,(n) gives the shortest solution.
* h,: If the rules are relaxed so that a tile can move to any adjacent square, then
h,(n) gives the shortest solution.

! 2 4 1 2 h,(start) = 8
> ® 3 4 > h,(start)
5 3 1 5 - 5 zi8+1+2+2+2+3+3+2

Start State Goal State



Heuristics from Relaxed Problems

What relaxations are used in these two cases?

Euclidean distance Manhattan distance
Start state Start state

Goal state Goal state



Heuristics from Subproblems

* Let h;(n) be the cost of getting a subset of tiles
(say, 1,2,3,4) into their correct positions. The final order of

the * tiles does not matter.
* Small subproblems are often easy to solve.

e Can precompute and save the exact solution cost for every
or many possible subproblem instances — pattern database.

* 1| 2 4 1 2
K K 3 ||| 4 K
K 3 1 x ||| % [|[ *

Start State Goal State



Dominance: What Heuristic is Better?

Definition: If h, and h, are both admissible heuristics
and h,(n) = h,(n) for all n, then
h, dominates h,

Is h, or h, better for A* search?
* A* search expands every node with
fn) < C" h(n) < C"- gn)
* h, is never smaller than h;. A* search with h, will expand
less nodes and is therefore better.



Example: Effect of Information in Search

Typical search costs for the 8-puzzle -l >

 Solution at depth d = 12

IDS =3,644,035 nodes

A*(h,) = 227 nodes

A*(h,) = 73 nodes

 Solution at depth d = 24
IDS = 54,000,000,000 nodes
A*(h,) = 39,135 nodes
A*(h,) = 1,641 nodes



Combining Heuristics

* Suppose we have a collection of admissible
heuristics hy, h,, ..., h,, but none of them
dominates the others.

* Combining them is easy:
h(n) = max{h,(n), h,(n),...,h(n)}

* That is, always pick for each node the heuristic that
is closest to the real cost to the goal h*(n).



Satisficing Search: Weighted A* Search

* Often it is sufficient to find a “good enough” solution if it can be found very
qu:jckly or with way less computational resources. l.e., expanding fewer
nodes.

* We could use inadmissible heuristics in A* search (e.g., by multiplying h(nl)
VY'itR ? factor W) that sometimes overestimate the optimal cost to the goa
slightly.

1. It potentially reduces the number of expanded nodes significantly.
2. This will break the algorithm’s optimality guaranty!

f(n) = gn) + W X h(n)

Weighted A* search: gn) + W x h(n)

The presented algorithms are special cases:

A* search: gn) + h(n) (W =1
Uniform cost search/BFS:  g(n) (W =0)
Greedy best-first search: h(n) (W = o)



Example of Weighted A* Search

Reduction in the number of expanded nodes

EEEEEEREEEREEEEEE D
BRERRRRRRRRRRRRDTD

2 2 S S S E S EE R X oo 04 4 onn
4 T i oo
oA oo
[ SR s oo
Giiessseness & oo age
ooww R
CHuBRRRRRRRERG B H80 g::::!: g?ég
e R E S EESEEERS B SREE Peabah - 4 & o
E R R R R TR B IR O..p." oo
S AL AR S st D I R T Gonace® 800
LE E RS S SRR R - 1 TR .
T GRLCRRN SR OO
R T T T R R T T R QIO T UL MO ©
B Qom0 seeen
RN L AR R R R D SRnLon
ERL AR R R Soon
PLERERE X AL RAOT QOMCT
FEERRRRRRE OO OLoo
coe
Breadth-first Search (BFS) Exact A* Search Weighted A* Search
f(n) = # actions to reach n fn) = gn) + hgyag(n) f(n) = gn) +5hg(n)

Source and Animation: Wikipedia



https://en.wikipedia.org/wiki/A*_search_algorithm

Implementation as Best-First Search

» All discussed search strategies can be implemented using Best-first search.

* Best-first search expands always the node with the minimum value of an
evaluation function f(n).

Search Strategy Evaluation function f(n)

BFS (Breadth-first search) g(m) (=uniform path cost)
Uniform-cost Search g(n) (=path cost)
DFS/IDS (see note below!) —g(n)

Greedy Best-first Search h(n)
(weighted) A* Search gn) + W x h(n)

* Important note: Do not implement DFS/IDS using Best-first Search!
You will get the poor space complexity and the disadvantages of DFS (not
optimal and worse time complexity)



Summary: Uninformed Search Strategies

Algorithm Complete? Optimal? Time Space
complexity complexity

BFS (Breadth- If all step 0(b%) 0(b?)
first search) costs are equal
Uniform-cost Yes Yes Number of nodes with g(n) < C*
Search
In finite spaces "
DFS (cycle checking) No o(b™) 0(bm)
IDS Yes IFall step 0(b?) 0(bd)

costs are equal

maximum branching factor of the search tree
depth of the optimal solution

: maximum length of any path in the state space
: cost of optimal solution




Summary: All Search Strategies

Ti
Algorithm Complete? Optimal? ime Space
complexity complexity

BFS (Breadth-
first search)

Uniform-cost

If all step
costs are equal

0(b%) 0(b%)

Search Yes Yes Number of nodes with g(n) < C°
DFS In finite spaces No 0(b™) 0(bm)
(cycles checking)
IDS Yes Trelll sty 0(b?) 0(bd)
costs are equal
Greedy best- |, finite spaces e Depends on Worst case: O(b™)
first Search (cycles checking) heuristic Best case: O(bd)
Number of nodes with
A* Search Yes Yes

gn)+hn) < C*



Planning vs. Execution Phase

1. Planning is done by a planning function using search. The result is a plan.

2. The plan can be executed by a model-based agent function. The used model
is the plan + a step counter so the agent function can follow the plan.

Planning function Execution function at step 2 in the plan
Agent Step Plan
1
Agent’s State 2
(= program counter) 3
4

Note: The agent does not use percepts or the transition function. It blindly follows the plan.
Caution: This only works in an environment with deterministic transitions.



Complete Planning Agent for a Maze-Solving Agent

Map
= Transition function +
initial and goal state

. Sensor input
Planning i

function

Agent
function

Counterin
plan
Execute
action in the
physical

environment

* The event loop calls the agent function for the next action.
* The agent function follows the plan or calls the planning function if there is no plan yet or it
thinks the current plan does not work based on the percepts (replanning).



o

—y

Conclusion

* Tree search can be used for planning actions
for goal-based agents in known, fully
observable and deterministic environments.

Issues are:

* The large search space typically does
not fit into memory. We use a
transition function as a compact
description of the transition model.

The search tree is built on the fly, and
we have to deal with cycles, redundant
paths, and memory management.

IDS is a memory efficient method used
often in Al for uninformed search.

Informed search uses heuristics based on
knowledge or percepts to improve search
performance (i.e., A* expand fewer nodes
than BFS).




	CS 5/7320 �Artificial Intelligence��Solving problems by searching�AIMA Chapter 3
	Contents
	Contents
	What are Search Problems?
	Remember: Goal-based Agent
	Planning for Search Problems
	Definition of a Search Problem
	Transition Function and Available Actions
	Example: Romania Vacation
	Example: Vacuum world
	Example: Sliding-tile Puzzle
	Example: Robot Motion Planning
	Contents
	Solving Search Problems
	Issue: Transition Model is Not a Tree!�It can have Redundant Paths
	Search Tree
	Differences Between Typical Tree Search and AI Search
	Tree Search Algorithm Outline
	Tree Search Example
	Tree Search Example
	Tree Search Example
	Search Strategies: Properties
	Search Strategies: Time and Space Complexity
	State Space
	Permutations
	Combinations
	Example: What is the State Space Size?
	Examples: What is the State Space Size?
	Examples: What is the State Space Size?
	Example: What is the Search Complexity?
	Examples: What is the �Search Complexity?
	Examples: What is the �Search Complexity?
	Uninformed Search
	Uninformed Search Strategies
	Breadth-First Search (BFS)
	Implementation: BFS
	Implementation: Expanding the Search Tree
	Time and Space Complexity �Breadth-First Search
	Properties of Breadth-First Search
	Uniform-cost Search �(= Dijkstra’s Shortest Path Algorithm)
	Implementation: Best-First Search Strategy
	Depth-First Search (DFS)
	Implementation: DFS
	Time and Space Complexity�Depth-First Search
	Properties of Depth-First Search
	Iterative Deepening Search (IDS)
	Iterative Deepening Search (IDS)
	Implementation: IDS
	Properties of Iterative Deepening Search
	Informed Search
	Informed Search
	Heuristic Function
	Heuristic for the Romania Problem
	Greedy Best-First Search Example
	Greedy Best-First Search Example
	Greedy Best-First Search Example
	Greedy Best-First Search Example
	Properties of Greedy Best-First Search
	Implementation of Greedy Best-First search
	Implementation of Greedy Best-First Search
	Properties of Greedy Best-First Search
	The Optimality Problem of �Greedy Best-First search
	A* Search
	A* Search Example
	A* Search Example
	A* Search Example
	A* Search Example
	A* Search Example
	A* Search Example
	BFS vs. A* Search
	Implementation of A* Search
	Optimality: Admissible Heuristics
	Guarantees of A*
	Properties of A*
	Designing Heuristic Functions
	Heuristics from Relaxed Problems
	Heuristics from Relaxed Problems
	Heuristics from Subproblems
	Dominance: What Heuristic is Better?
	Example: Effect of Information in Search
	Combining Heuristics
	Satisficing Search: Weighted A* Search
	Example of Weighted A* Search
	Implementation as Best-First Search
	Summary: Uninformed Search Strategies
	Summary: All Search Strategies
	Planning vs. Execution Phase
	Complete Planning Agent for a Maze-Solving Agent
	Conclusion

