
CS 5/7320
Artificial Intelligence

Local Search
AIMA Chapters 4.1 & 4.2

Slides by Michael Hahsler
based on slides by Svetlana Lazepnik
with figures from the AIMA textbook.

Online Material
This work is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Contents

What is Local
Search?

Hill-Climbing
Search

Simulated
Annealing

Evolutionary
Algorithms

Search in
Continuous

Spaces

Recap: Uninformed and Informed Search

Tries to plan the
best path
from a
given initial state
to a
given goal state.

• Often comes with completeness
and optimality guarantees (BFS, A*
Search, IDS).

• Issue: Typically have to search a
large portion of the search space
and therefore need a lot of time
and memory.

Initial state

Goal
state

Local Search
• Assume we know the utility of

each possible state given by a
utility function
 𝑈𝑈 = 𝑢𝑢(𝑠𝑠)

• We use a factored state
description. Here 𝑠𝑠 = (𝑥𝑥,𝑦𝑦)

• How can we identify the best or at
least a “good” state?

• This is the optimization problem:
𝑠𝑠∗ = argmax

𝑠𝑠∈𝑆𝑆
𝑢𝑢(𝑠𝑠)

• We need a fast and memory-
efficient way to find the best/a
good state.

x
x

Local improvement
move from state to

state

Idea:
Start with a current solution (a state) and improve the solution by moving from the
current state to a “neighboring” better state (a.k.a. performing a series of local moves).

Main Differences to Tree Search
a) The goal states are unknown, but we know or can calculate

the utility for each state. We want to identify a high-utility
state.

b) Often, no explicit initial state is given, and the path to the
goal and the path cost are not important.

c) No search tree. Just stores the current state and moves to a
“better” state if possible. Needs little memory and only
requires very simple code.

Use of Local Search in AI

• Goal-based agent: Identify a good goal state with a good utility
before planning a path to that state using a planning agent.

• Utility-based agent: Always move to a neighboring state with higher
utility. A simple greedy method used for

• complicated/large state spaces or
• online search.

• General optimization: 𝑢𝑢(𝑠𝑠) can be replaced by a general objective
function. Local search is an effective heuristic to find good solutions
in complicated search spaces.
E.g., stochastic gradient descent to train neural networks (minimize
the prediction error)

Defining A Local Search Problem

• State space: How large is the state space?

• State representation: How do we define a factored
state representation?

• Objective function: What is a possible utility function
given the state representation?

• Local neighborhood: What states are close to each
other? Replaces the

transition function.

Replaces the
goal state

Example: n-Queens Problem
Place 𝑛𝑛 queens on a 𝑛𝑛 × 𝑛𝑛 chess board so no two
queens are in the same row, column or diagonal.
Defining the search problem:
State space: All possible n-queen configurations. How
many are there?

• 4-queens problem: 16
4 = 1820

State representation: How do we define a factored
representation?
• E.g. (𝑎𝑎𝑎,𝑏𝑏𝑏,𝑏𝑏𝑏, 𝑐𝑐𝑐)
Objective function: What is a possible utility function
given the state representation?
• Maximizing utility means minimize the number of

pairwise conflicts based on the state representation.
Local neighborhood: What states are close to each
other?
• Move a single queen.

0 conflicts = utility of 0

2 conflicts = utility of -2

a b c d

4

3

2

1

Has its optimum at the goal state. Similar to a
heuristic in A* search. No need to be admissible.

Local
move

Example: Traveling salesman problem
Find the shortest tour connecting a given set of cities

• State space: all possible tours (states are not individual cities!)

• State representation: Order of cities in the tour.

• Objective function: minimize the length of the tour.

• Local neighborhood: Change the order of visiting a few cities.

Note: We have solved a different problem with uninformed/informed search! Each city was defined as a state
and the path was the solution.

Hill-Climbing Search
aka Greedy Local Search
Idea: keep a single “current” state and try to find better
neighboring states.

MotorCycleUSA.com

Example: n-Queens Problem
• Goal: Put n queens on an n × n board with no two queens on the same row, column, or diagonal.

• State space: all possible n-queen configurations. We can restrict the state space: Only one queen
per column.

• State representation: row position of each queen in its column (e.g., 2, 3, 2, 3)

• Objective function: minimize the number of pairwise conflicts.

• Local neighborhood: Move one queen anywhere in its column.

Improvement strategy
• Find a local neighboring state (move one queen within its column) to reduce conflicts.

4-queens
problem: State

space is reduced
from 1820 to
44 = 256

4

3

2

1

Example: n-Queens Problem 2
Find the best local move: Evaluate the objective function for all local neighbors
(moving a single queen in its column while leaving the others in place).

Best local improvement has ℎ = 12

Notes:
• There are many options with ℎ = 12.

We typically pick one randomly.
• Calculating all the objective values may be

expensive!

Current objective value: ℎ = 17

Objective value after moving the
queen in column 1 to this square

Example: n-Queens Problem 3
Formulation as an optimization problem:
Find the best state 𝑠𝑠∗ representing an arrangement of
queens.

 𝑠𝑠∗ = argmin𝑠𝑠∈𝑆𝑆 conflicts(𝑠𝑠)

 subject to: 𝑠𝑠 has one queen per column

Remember: This makes
the problem a lot easier.

Example: Traveling Salesman Problem 2
• Goal: Find the shortest tour connecting 𝑛𝑛 cities
• State space: all possible tours
• State representation: tour (order in which to visit the

cities) = a permutation. There are 𝑛𝑛! Many permutations.
• Objective function: length of tour
• Local neighborhood: reverse the order of visiting a few

cities

A B

C

D E

A B

C

D E

ABDEC ABCED
State representation
(permutation):

Local move to reverse the order of cities C, E and D:

Example: Traveling Salesman Problem 3

Formulation as an optimization problem:
Find the best tour 𝜋𝜋
 𝜋𝜋∗ = argmin𝜋𝜋 tourLength 𝜋𝜋

 s.t. 𝜋𝜋 is a valid permutation (i.e., sub-tour elimination)

A B

C

D E

A B

C

D E

ABDEC ABCEDState representation:

Local move to reverse the order of cities C, E and D:

Hill-Climbing Search (Greedy Local Search)

Variants:
• Steepest ascent hill climbing: Check all possible

successors and choose the highest-valued successor.

• Stochastic hill climbing: Choose randomly among all
uphill (improvement) moves.

• First-choice stochastic hill climbing: Generate
randomly one new successor at a time and only move
to better ones. This is what people often mean by
“stochastic hill climbing.” It is equivalent to a, but
computationally much cheaper.

We often start with a random state

Maximization

Use ≥ for minimization

Minimization

ℎ = 17

Local Optima

Local Optima
Hill-climbing search is like greedy best-first search with the objective function
as a (maybe not admissible) heuristic. It only stores the current state (has no
frontier data structure) and just stops at a dead end.
Is it complete/optimal?

• No – can get stuck in local optima.

ℎ = 1

Example: local optimum for the 8-
queens problem. No single queen
can be moved within its column
to improve the objective
function.

Simple approach that can help with local optima:
Random-restart hill climbing: Restart hill-climbing many times with random
initial states and return the best solution. This strategy can be used for any
stochastic (i.e., randomized) algorithm.

The State Space “Landscape”

Neighbors placed
next to each other

𝑢𝑢 𝑠𝑠

𝑠𝑠

Maximization

How to escape local maxima?
 Random restart hill-climbing can help.

What about “shoulders” (called “ridges” in higher-dimensional spaces)?
 Hill-climbing that allows sideways moves and uses momentum.

Minimization vs. Maximization
• The name hill climbing used in AI implies maximizing a function.
• Optimizers often prefer to state problems as minimization problems

and refer to hill climbing as gradient descent.
• Minimization and maximization are equivalent problems:

ma𝑥𝑥 𝑓𝑓 𝑥𝑥 ⟺ min −𝑓𝑓 𝑥𝑥

Convex vs. Non-Convex Optimization Problems

Non-convex Problem

Many local optima  hard
One global optimum +

continuous smooth function
 calculus makes it easy

(solve 𝑓𝑓′ 𝑥𝑥 = 0)

Convex Problem

Many AI problems are in addition discrete
(the objective function is not differentiable).
We often have to settle for a local optimum.

Minimization

Simulated Annealing
Using heat to escape local optima…

Idea of Simulated Annealing
• Use first-choice stochastic hill climbing + escape local minima by allowing

some “bad” moves but gradually decreasing their frequency.
• Inspired by the process of controlled cooling of glass or metals. Decreasing

the temperature means decreasing the chance of accepting bad moves.
O

bj
ec

tiv
e

fu
nc

tio
n

State space

“bad” local moveMinimization

Simulated Annealing Algorithm
• Use first-choice stochastic hill climbing + escape local minima by allowing some “bad”

moves but gradually decreasing their frequency as we get closer to the solution.
• Annealing tries to reach a low energy state: A negative Δ𝐸𝐸 means the solution gets

better.
• The probability of accepting “bad” moves follows the annealing schedule, which reduces

the temperature 𝑇𝑇 over time 𝑡𝑡.

Note: Use 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) – 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) for minimization

Typically, we start with a random state

Maximization

if Δ𝐸𝐸 ≤ 0 then Accept “bad” moves with a
probability inspired by the
acceptance criterion in the
Metropolis–Hastings MCMC
algorithm.

Always accept good moves
that reduce the energy.

The Effect of Temperature

-∆E
←solution gets worse

Pr
ob

. o
f a

cc
ep

tin
g

a
w

or
se

 st
at

e
ex

p(
-∆

E/
T)

Convert the changes due to “bad” moves into an acceptance probability depending
on the temperature. The criterion uses the negative part of the exponential function.

Cooling Schedule

The cooling schedule is very important.
Popular schedules for the temperature at time 𝑡𝑡:

• Classic simulated annealing: 𝑇𝑇𝑡𝑡 = 𝑇𝑇0
1

log(1+𝑡𝑡)

• Exponential cooling (Kirkpatrick, Gelatt and Vecchi; 1983)

𝑇𝑇𝑡𝑡 = 𝑇𝑇0𝛼𝛼𝑡𝑡 for 0.8 < 𝛼𝛼 < 1

• Fast simulated annealing (Szy and Hartley; 1987)

𝑇𝑇𝑡𝑡 = 𝑇𝑇0
1

1 + 𝑡𝑡
Notes:

• Choose 𝑇𝑇0 to provide a high probability 𝑝𝑝0 = 𝑒𝑒−
Δ𝐸𝐸
𝑇𝑇0 that any move will be accepted at time

𝑡𝑡 = 0. Δ𝐸𝐸 is determined by the worst possible move.
• 𝑇𝑇𝑡𝑡 will not become 0 but very small. Stop when 𝑇𝑇 < 𝜖𝜖 (𝜖𝜖 is a very small constant).
• The best schedule (cooling rate) is typically determined by trial-and-error. The goal is to

have a low chance of getting stuck in a local optima.

Simulated Annealing Search

Guarantee
If the temperature is decreased slowly enough, then
simulated annealing search will find a global
optimum with a probability approaching one.

However:
• This usually takes an impractically long time.
• The best cooling schedule and local move need to be

determined experimentally.

Evolutionary Algorithms
A Population-based Metaheuristics

Evolutionary Algorithms / Genetic Algorithms

• A metaheuristic for population-based optimization.
• Uses mechanisms inspired by biological evolution (genetics):

• Reproduction: Random selection with probability based on a
fitness function.

• Random recombination (crossover)
• Random mutation
• Repeated for many generations

• Example: 8-queens problem

next generation

Individual = state
representation as

a chromosome:
row of the queen
in each column

8
7
6
5
4
3
2
1

Search in Continuous Spaces

Methods: Discretization of Continuous Space

• Use atomic states and create a graph as the transition function.

• Use a grid with spacing of size 𝛿𝛿
Note: You probably need a way
 finer grid!

x

y

𝛿𝛿

Example: Discretization of Continuous Space

How did we discretize this space?
Initial state

Goal
state

Discretization grid

State representation: 𝒙𝒙 = 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑘𝑘
State space size: infinite
Objective function: min 𝑓𝑓 𝒙𝒙
Local neighborhood: small changes in 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑘𝑘

Gradient at point 𝒙𝒙: ∇𝑓𝑓 𝒙𝒙 = 𝜕𝜕𝜕𝜕 𝒙𝒙
𝜕𝜕𝑥𝑥1

, 𝜕𝜕𝜕𝜕 𝒙𝒙
𝜕𝜕𝑥𝑥2

, …, 𝜕𝜕𝜕𝜕 𝒙𝒙
𝜕𝜕𝑥𝑥𝑘𝑘

 (=evaluation of the Jacobian matrix at 𝒙𝒙)

Find optimum by solving: ∇𝑓𝑓 𝒙𝒙 = 0

• Gradient descent (= Steepest-ascend hill climbing for minimization)
with step size 𝛼𝛼 (typically reduced over time)

Repeat: 𝒙𝒙 ← 𝒙𝒙 − 𝛼𝛼∇𝑓𝑓 𝒙𝒙

• Newton-Raphson method
uses the inverse of the Hessian matrix (second-order partial derivative of 𝑓𝑓 𝒙𝒙)

 𝐻𝐻𝑖𝑖𝑖𝑖 = 𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥𝑖𝑖𝜕𝜕𝑥𝑥𝑗𝑗

 as the optimal step size

 Repeat: 𝒙𝒙 ← 𝒙𝒙 − 𝑯𝑯𝑓𝑓
−1(𝒙𝒙)∇𝑓𝑓 𝒙𝒙

Note: May get stuck in a local optimum if the search space is non-convex! Use simulated annealing, momentum or other
methods to escape local optima.

𝑓𝑓(𝒙𝒙)

𝑥𝑥1 𝑥𝑥2

Search in Continuous Spaces:
Gradient Descent

∇𝑓𝑓 𝒙𝒙

Search in Continuous Spaces:
Stochastic Gradient Descent

• What if the mathematical formulation of the objective function is not
known?

• We may have objective values at fixed points, called the training data.

• In this case, we can perform gradient descent with an approximation of
the gradient using the data points as a sample. This is called stochastic
gradient descent (SGD).

 We will talk more about search in continuous spaces with loss functions
using gradient descent when we discuss parameter learning for learning
from examples (machine learning).

Conclusion

• Local search provides a fast method to
find good solutions to many difficult
optimization problems.

• Local optima are a big issue that can be
addressed with random restarts and
simulated annealing.

	CS 5/7320 Artificial Intelligence��Local Search�AIMA Chapters 4.1 & 4.2�
	Contents
	Recap: Uninformed and Informed Search
	Local Search
	Main Differences to Tree Search
	Use of Local Search in AI
	Defining A Local Search Problem
	Example: n-Queens Problem
	Example: Traveling salesman problem
	Hill-Climbing Search �aka Greedy Local Search
	Example: n-Queens Problem
	Example: n-Queens Problem 2
	Example: n-Queens Problem 3
	Example: Traveling Salesman Problem 2
	Example: Traveling Salesman Problem 3
	Hill-Climbing Search (Greedy Local Search)
	Local Optima
	Local Optima
	The State Space “Landscape”
	Minimization vs. Maximization
	Convex vs. Non-Convex Optimization Problems
	Simulated Annealing
	Idea of Simulated Annealing
	Simulated Annealing Algorithm
	The Effect of Temperature
	Cooling Schedule
	Simulated Annealing Search
	Evolutionary Algorithms
	Evolutionary Algorithms / Genetic Algorithms
	Search in Continuous Spaces
	Methods: Discretization of Continuous Space
	Example: Discretization of Continuous Space
	Search in Continuous Spaces: Gradient Descent
	Search in Continuous Spaces: Stochastic Gradient Descent
	Conclusion

