
CS 5/7320 
Artificial Intelligence

Local Search
AIMA Chapters 4.1 & 4.2

Slides by Michael Hahsler
based on slides by Svetlana Lazepnik
with figures from the AIMA textbook.

This work is licensed under a Creative Commons 
Attribution-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/


Recap: Uninformed and Informed Search

Tries to plan the 
best path
from a 
given initial state
to a 
given goal state.

• Typically searches a large 
portion of the search space 
(needs time and memory).

• Often comes with optimality 
guarantees (BFS, A* Search, 
IDS).

Initial state

Goal 
state



Local Search Algorithms
• What if we do not know the goal 

state, but the utility of different 
states is given by a utility function

𝑈𝑈 = 𝑢𝑢(𝑠𝑠)? 

• We use a factored state 
description. Here 𝑠𝑠 = (𝑥𝑥,𝑦𝑦)

• We could try to identify the best 
or at least a “good” state?

• This is the optimization problem:
𝑠𝑠∗ = argmax

𝑠𝑠∈𝑆𝑆
𝑢𝑢(𝑠𝑠)

• We need a fast and memory-
efficient way to find the best/a 
good state. 

x
x

Local move from 
state to state

Idea: 
Start with a current solution (a state) and improve the solution by moving from the 
current state to a “neighboring” better state (a.k.a. performing a series of local moves). 



Local Search Algorithms
Difference to search from the previous chapter:

a) Goal state is unknown, but we know or can calculate the utility for each state. 
We want to identify the state with the highest utility. 

b) Often no explicit initial state + path to goal and path cost are not important.
c) No search tree. Just stores the current state and move to a “better” state if 

possible.

Use in AI
• Goal-based agent: Identify a good goal state with a good utility before planning 

a path to that state.
• Utility-based agent: Always move to neighboring higher utility states. A simple 

greedy method used for complicated/large state spaces or online search.
• General optimization: 𝑢𝑢(𝑠𝑠) can be replaced by a general objective function. 

Local search is an effective heuristic to find good solutions in large or continuous 
search spaces. E.g., gradient descend to train neural networks.



Example: 
n-Queens Problem
Goal: Put n queens on an n × n board with no 
two queens on the same row, column, or 
diagonal.

Defining the search problem:

• State space: All possible n-queen 
configurations. How many are there?

• State representation: How do we define a 
factored representation?

• Objective function: What is a possible utility 
function given the state representation?

• Local neighborhood: What states are close to 
each other?

states



Example: 
n-Queens Problem
Defining the search problem:
• State space: All possible n-queen 

configurations. How many are there?
4-queens problem:  16

4 = 1820
• State representation: How do we define a 

facroted representation?
E.g. (𝐴𝐴2,𝐵𝐵3,𝐵𝐵4,𝐶𝐶1)

• Objective function: What is a possible utility 
function given the state representation?
Maximizing utility means minimize the 
number of pairwise conflicts based on the 
state representation.

• Local neighborhood: What states are close 
to each other?
Move a single queen.

2 conflicts = utility of -2

0 conflicts = utility of 0

A       B       C         D

4

3

2

1



Example: Traveling salesman problem
• Goal: Find the shortest tour connecting a given set of cities

• State space: all possible tours (states are not individual cities!)

• State representation: Order of cities in the tour.

• Objective function: minimize the length of the tour

• Local neighborhood: Change the order of visiting a few cities.

Note: We have solved a different problem with uninformed/informed search! Each city was defined as a state 
and the path was the solution.



Hill-Climbing Search 
aka Greedy Local Search
Idea: keep a single “current” state and try to find better 
neighboring states.

MotorCycleUSA.com



Example: n-Queens Problem
• Goal: Put n queens on an n × n board with no two queens on the same row, column, or diagonal.

• State space: all possible n-queen configurations. We can restrict the state space: Only one queen 
per column.

• State representation: row position of each queen in its column (e.g., 2, 3, 2, 3)

• Objective function: minimize the number of pairwise conflicts.

• Local neighborhood: Move one queen anywhere in its column.

Improvement strategy
• Find a local neighboring state (move one queen within its column) to reduce conflicts

State space is 
reduced 

from 1820 to 
44 = 256

4

3

2

1



Example: n-Queens Problem

Current objective value: ℎ =  17 
best local improvement has ℎ =  12

Notes: 
• There are many options with ℎ =  12. 

We must choose one!
• Calculating all the objective values may be 

expensive!

To find the best local move, we must evaluate all local neighbors (moving a single  
queen in its column while leaving the others in place) and calculate the objective 
function.

Objective value after moving 
the queen to this square



Example: n-Queens Problem
Formulation as an optimization problem: 
Find the best state 𝑠𝑠∗ representing an arrangement of queens.

𝑠𝑠∗ = argmin𝑠𝑠∈𝑆𝑆 conflicts(𝑠𝑠)

subject to:  𝑠𝑠 has one queen per column Remember: This makes 
the problem a lot easier.



Example: Traveling Salesman Problem
• Goal: Find the shortest tour connecting n cities
• State space: all possible tours
• State representation: tour (order in which to visit the cities) = a permutation
• Objective function: length of tour
• Local neighborhood: reverse the order of visiting a few cities

A B

C

D E

A B

C

D E

ABDEC ABCEDState representation:

Local move to reverse the order of cities C, E and D:



Example: Traveling Salesman Problem

Formulation as an optimization problem: 
Find the best tour 𝜋𝜋

𝜋𝜋∗ = argmin𝜋𝜋 tourLength 𝜋𝜋

s.t. 𝜋𝜋 is a valid permutation (i.e., sub-tour elimination) 

A B

C

D E

A B

C

D E

ABDEC ABCEDState representation:

Local move to reverse the order of cities C, E and D:



Hill-Climbing Search (= Greedy Local Search)

Variants:
Steepest-ascend hill climbing

• Check all possible successors and choose the highest-
valued successors.

Stochastic hill climbing 
• choose randomly among  all uphill moves, or
• generate randomly one new successor at a time until a 

better one is found = first-choice hill climbing – the most 
popular variant, this is what people often mean when 
they say “stochastic hill climbing”

Typically, we start with a random state



Local Optima
Hill-climbing search is like greedy best-first search with the objective function 
as a (maybe not admissible) heuristic and no frontier (just stops in a dead 
end). 
Is it complete/optimal?

• No – can get stuck in local optima

ℎ =  1

Example: local optimum for the 8-
queens problem. No single queen 
can be moved within its column 
to improve the objective 
function.

Simple approach that can help with local optima:
Random-restart hill climbing 

• Restart hill-climbing many times with random initial states and return the best 
solution.



The State Space “Landscape”

How to escape local maxima?
 Random restart hill-climbing can help.

What about “shoulders” (called “ridges” in higher dimensional space)?
 Hill-climbing that allows sideways moves and uses momentum.

Neighbors placed 
next to each other

max.

We can get the utility (objective function value) from the state description using 𝑈𝑈 = 𝑢𝑢 𝑠𝑠 .

𝑢𝑢 𝑠𝑠

𝑠𝑠



Minimization vs. Maximization
• The name hill climbing implies maximizing a function.
• Optimizers like to state problems as minimization problems and call hill 

climbing gradient descent instead.
• Both types of problems are equivalent:

ma𝑥𝑥 𝑓𝑓 𝑥𝑥 ⟺ min −𝑓𝑓 𝑥𝑥



Convex vs. Non-Convex 
Optimization Problems

Non-convex Problem

Many local optima  hard
One global optimum + 

smooth function  calculus 
makes it easy

Convex Problem

Many discrete optimization 
problems are like this.

Minimization problems



Simulated Annealing
Use heat to escape local optima…



Simulated Annealing
• Idea: First-choice stochastic hill climbing + escape local minima by 

allowing some “bad” moves but gradually decrease their frequency.
• Inspired by the process of controlled cooling of glass or metals by 

decreasing the temperature (here chance of accepting bad moves) 
gradually.

O
bj

ec
tiv

e 
fu

nc
tio

n 
(m

in
im

ize
)

State space

“bad” local move



Simulated Annealing
• Idea: First-choice stochastic hill climbing + escape local minima by allowing 

some “bad” moves but gradually decreasing their frequency as we get closer to 
the solution.

• Annealing tries to reach a low energy state so a negative Δ𝐸𝐸 means the solution 
gets better.

• The probability of accepting “bad” moves follows the annealing schedule that 
reduces the temperature 𝑇𝑇 over time 𝑡𝑡.

Always accept good moves 
that reduce the energy.

Accept “bad” moves with a 
probability  inspired by the 
acceptance criterion in the 
Metropolis–Hastings MCMC 
algorithm.Note: Use 𝑉𝑉𝐴𝐴𝑉𝑉𝑈𝑈𝐸𝐸(𝑛𝑛𝑛𝑛𝑥𝑥𝑡𝑡) –  𝑉𝑉𝐴𝐴𝑉𝑉𝑈𝑈𝐸𝐸(𝑐𝑐𝑢𝑢𝑐𝑐𝑐𝑐𝑛𝑛𝑛𝑛𝑡𝑡) for minimization

Typically, we start with a random state

Maximization

if Δ𝐸𝐸 < 0 then



The Effect of Temperature

-∆E (neg. means the solution gets worse)

Pr
ob

. o
f a

cc
ep

tin
g 

a 
w

or
se

 st
at

e 
ex

p(
-∆

E/
T)

Convert the changes due to “bad” moves into an acceptance probability depending
on the temperature. The criterion uses the negative part of the exponential function.



The cooling schedule is very important. 
Popular schedules for the temperature at time 𝑡𝑡:

• Classic simulated annealing:  𝑇𝑇𝑡𝑡 = 𝑇𝑇0
1

log(1+𝑡𝑡)

• Exponential cooling  (Kirkpatrick, Gelatt and Vecchi; 1983) 

𝑇𝑇𝑡𝑡 = 𝑇𝑇0𝛼𝛼𝑡𝑡 for    0.8 < 𝛼𝛼 < 1
• Fast simulated annealing (Szy and Hartley; 1987)

𝑇𝑇𝑡𝑡 = 𝑇𝑇0
1

1 + 𝑡𝑡
Notes:

• Choose 𝑇𝑇0 to provide a high probability 𝑝𝑝0 = 𝑛𝑛−
Δ𝐸𝐸
𝑇𝑇0 that any move will be accepted at time 

𝑡𝑡 = 0. Δ𝐸𝐸 is determined by the worst possible move.
• 𝑇𝑇𝑡𝑡 will not become 0 but very small. Stop when 𝑇𝑇 < 𝜖𝜖 (𝜖𝜖 is a very small constant).
• The best schedule (cooling rate) is typically determined by trial-and-error. The goal is to 

have a low chance of getting stuck in a local optima.

Cooling Schedule



Simulated Annealing Search

Guarantee: If the temperature is decreased slowly 
enough, then simulated annealing search will find a 
global optimum with a probability approaching one.

However:
• This usually takes impractically long.
• We need to experiment with the cooling schedule to 

find one that typically avoids local optima.



Evolutionary Algorithms
A Population-based Metaheuristics



Evolutionary Algorithms / Genetic Algorithms

• A metaheuristic for population-based optimization.  
• Uses mechanisms inspired by biological evolution (genetics):

• Reproduction: Random selection with probability based on a 
fitness function.

• Random recombination (crossover)
• Random mutation
• Repeated for many generations

• Example: 8-queens problem

next generation

Individual = state
representation as 
a chromosome: 

row of the queen 
in each column

8
7
6
5
4
3
2
1



Search in Continuous Spaces



Discretization of Continuous Space 
• Use atomic states and create a graph as the transition function.

• Use a grid with spacing of size 𝛿𝛿
Note: You probably need a way

finer grid!

x

y

𝛿𝛿



Discretization of Continuous Space 

How did we discretize this space?   
Initial state

Goal 
state

Discretization grid



Search in Continuous Spaces: 
Gradient Descent
State space: infinite
State representation: 𝒙𝒙 = 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑘𝑘
Objective function: min 𝑓𝑓 𝒙𝒙 = 𝑓𝑓 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑘𝑘
Local neighborhood: small changes in 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑘𝑘

Gradient at point 𝒙𝒙:   ∇𝑓𝑓 𝒙𝒙 = 𝜕𝜕𝜕𝜕 𝒙𝒙
𝜕𝜕𝑥𝑥1

, 𝜕𝜕𝜕𝜕 𝒙𝒙
𝜕𝜕𝑥𝑥2

, …, 𝜕𝜕𝜕𝜕 𝒙𝒙
𝜕𝜕𝑥𝑥𝑘𝑘

(=evaluation of the Jacobian matrix at 𝒙𝒙)

Find optimum by solving: ∇𝑓𝑓 𝒙𝒙 = 0

• Gradient descent (= Steepest-ascend hill climbing for minimization)  
with step size 𝛼𝛼

Repeat: 𝒙𝒙 ← 𝒙𝒙 − 𝛼𝛼∇𝑓𝑓 𝒙𝒙

• Newton-Raphson method
uses the inverse of the Hessian matrix (second-order partial derivative of 𝑓𝑓 𝒙𝒙 )

𝐻𝐻𝑖𝑖𝑖𝑖 = 𝜕𝜕2𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖𝜕𝜕𝑥𝑥𝑗𝑗

as the optimal step size

Repeat: 𝒙𝒙 ← 𝒙𝒙 − 𝑯𝑯𝜕𝜕
−1(𝒙𝒙)∇𝑓𝑓 𝒙𝒙

Note: May get stuck in a local optimum if the search space is non-convex! Use simulated annealing, momentum or other 
methods to escape local optima.

𝑓𝑓(𝑥𝑥)

𝑥𝑥1 𝑥𝑥2



Search in Continuous Spaces: 
Stochastic Gradient Descent

• What if a complete mathematical formulation of the objective function 
over is not known?

• We may have objective values at fixed points, called the training data.
• In this case, we can perform gradient descent on an approximation of 

the gradient using the data points. This is called stochastic gradient 
descent (SGD). 

We will talk more about search in continuous spaces with loss functions 
using gradient descend when we talk about parameter learning for 
machine learning. 


	CS 5/7320 Artificial Intelligence��Local Search�AIMA Chapters 4.1 & 4.2�
	Recap: Uninformed and Informed Search
	Local Search Algorithms
	Local Search Algorithms
	Example: �n-Queens Problem
	Example: �n-Queens Problem
	Example: Traveling salesman problem
	Hill-Climbing Search �aka Greedy Local Search
	Example: n-Queens Problem
	Example: n-Queens Problem
	Example: n-Queens Problem
	Example: Traveling Salesman Problem
	Example: Traveling Salesman Problem
	Hill-Climbing Search (= Greedy Local Search)
	Local Optima
	The State Space “Landscape”
	Minimization vs. Maximization
	Convex vs. Non-Convex �Optimization Problems
	Simulated Annealing
	Simulated Annealing
	Simulated Annealing
	The Effect of Temperature
	Cooling Schedule
	Simulated Annealing Search
	Evolutionary Algorithms
	Evolutionary Algorithms / Genetic Algorithms
	Search in Continuous Spaces
	Discretization of Continuous Space 
	Discretization of Continuous Space 
	Search in Continuous Spaces: Gradient Descent
	Search in Continuous Spaces: Stochastic Gradient Descent

