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Recap: Uninformed and Informed Search

Tries to plan the 
best path 
from a 
given initial state 
to a 
given goal state.

• Often comes with completeness 
and optimality guarantees (BFS, A* 
Search, IDS).

• Issue: Typically have to search a 
large portion of the search space 
and therefore need a lot of time 
and memory.

Initial state

Goal 
state



Local Search
• Assume we know the utility of 

each possible state given by a 
utility function
 𝑈𝑈 = 𝑢𝑢(𝑠𝑠)

• We use a factored state 
description. Here 𝑠𝑠 =  (𝑥𝑥,𝑦𝑦)

• How can we identify the best or at 
least a “good” state?

• This is the optimization problem:
𝑠𝑠∗ =  argmax

𝑠𝑠∈𝑆𝑆
𝑢𝑢(𝑠𝑠)

• We need a fast and memory-
efficient way to find the best/a 
good state. 

x
x

Local improvement  
move from state to 

state

Idea: 
Start with a current solution (a state) and improve the solution by moving from the 
current state to a “neighboring” better state (a.k.a. performing a series of local moves). 



Main Differences to Tree Search
a) The goal states are unknown, but we know or can calculate 

the utility for each state. We want to identify a high-utility 
state.

b) Often, no explicit initial state is given, and the path to the 
goal and the path cost are not important.

c) No search tree. Just stores the current state and moves to a 
“better” state if possible. Needs little memory and only 
requires very simple code.



Use of Local Search in AI

• Goal-based agent: Identify a good goal state with a good utility 
before planning a path to that state using a planning agent.

• Utility-based agent: Always move to a neighboring state with higher 
utility. A simple greedy method used for 

• complicated/large state spaces or 
• online search.

• General optimization: 𝑢𝑢(𝑠𝑠) can be replaced by a general objective 
function. Local search is an effective heuristic to find good solutions 
in complicated search spaces. 
E.g., stochastic gradient descent to train neural networks (minimize 
the prediction error)



Defining A Local Search Problem

• State space: How large is the state space?

• State representation: How do we define a factored 
state representation?

• Objective function: What is a possible utility function 
given the state representation?

• Local neighborhood: What states are close to each 
other? Replaces the 

transition function.

Replaces the 
goal state



Example: n-Queens Problem
Place 𝑛𝑛 queens on a 𝑛𝑛 × 𝑛𝑛 chess board so no two 
queens are in the same row, column or diagonal.
Defining the search problem:
State space: All possible n-queen configurations. How 
many are there?

• 4-queens problem:  16
4 = 1820

State representation: How do we define a factored 
representation?
• E.g. (𝑎𝑎𝑎,𝑏𝑏𝑏,𝑏𝑏𝑏, 𝑐𝑐𝑐)
Objective function: What is a possible utility function 
given the state representation?
• Maximizing utility means minimize the number of 

pairwise conflicts based on the state representation.
Local neighborhood: What states are close to each 
other?
• Move a single queen.

0 conflicts = utility of 0

2 conflicts = utility of -2

a       b       c         d

4

3

2

1

Has its optimum at the goal state. Similar to a 
heuristic in A* search. No need to be admissible.

Local 
move



Example: Traveling salesman problem
Find the shortest tour connecting a given set of cities

• State space: all possible tours (states are not individual cities!)

• State representation: Order of cities in the tour.

• Objective function: minimize the length of the tour.

• Local neighborhood: Change the order of visiting a few cities.

Note: We have solved a different problem with uninformed/informed search! Each city was defined as a state 
and the path was the solution.



Hill-Climbing Search 
aka Greedy Local Search
Idea: keep a single “current” state and try to find better 
neighboring states.

MotorCycleUSA.com



Example: n-Queens Problem
• Goal: Put n queens on an n × n board with no two queens on the same row, column, or diagonal.

• State space: all possible n-queen configurations. We can restrict the state space: Only one queen 
per column.

• State representation: row position of each queen in its column (e.g., 2, 3, 2, 3)

• Objective function: minimize the number of pairwise conflicts.

• Local neighborhood: Move one queen anywhere in its column.

Improvement strategy
• Find a local neighboring state (move one queen within its column) to reduce conflicts.

4-queens 
problem: State 

space is reduced 
from 1820 to 
44 = 256

4

3

2

1



Example: n-Queens Problem 2
Find the best local move: Evaluate the objective function for all local neighbors 
(moving a single queen in its column while leaving the others in place).

Best local improvement has ℎ =  12

Notes: 
• There are many options with ℎ =  12. 

We typically pick one randomly.
• Calculating all the objective values may be 

expensive!

Current objective value: ℎ =  17 

Objective value after moving the 
queen in column 1 to this square



Example: n-Queens Problem 3 
Formulation as an optimization problem: 
Find the best state 𝑠𝑠∗ representing an arrangement of 
queens.

     𝑠𝑠∗ = argmin𝑠𝑠∈𝑆𝑆 conflicts(𝑠𝑠)
     
     subject to:  𝑠𝑠 has one queen per column

Remember: This makes 
the problem a lot easier.



Example: Traveling Salesman Problem 2
• Goal: Find the shortest tour connecting 𝑛𝑛 cities
• State space: all possible tours
• State representation: tour (order in which to visit the 

cities) = a permutation. There are 𝑛𝑛! Many permutations.
• Objective function: length of tour
• Local neighborhood: reverse the order of visiting a few 

cities

A B

C

D E

A B

C

D E

ABDEC ABCED
State representation 
(permutation):

Local move to reverse the order of cities C, E and D:



Example: Traveling Salesman Problem 3

Formulation as an optimization problem: 
Find the best tour 𝜋𝜋
      𝜋𝜋∗ = argmin𝜋𝜋 tourLength 𝜋𝜋

        s.t. 𝜋𝜋 is a valid permutation (i.e., sub-tour elimination) 

A B

C

D E

A B

C

D E

ABDEC ABCEDState representation:

Local move to reverse the order of cities C, E and D:



Hill-Climbing Search (Greedy Local Search)

Variants:
• Steepest ascent hill climbing: Check all possible 

successors and choose the highest-valued successor.

• Stochastic hill climbing: Choose randomly among all 
uphill (improvement) moves.

• First-choice stochastic hill climbing:  Generate 
randomly one new successor at a time and only move 
to better ones. This is what people often mean by 
“stochastic hill climbing.” It is equivalent to a, but 
computationally much cheaper.

We often start with a random state

Maximization

Use ≥ for minimization

Minimization

ℎ =  17 



Local Optima



Local Optima
Hill-climbing search is like greedy best-first search with the objective function 
as a (maybe not admissible) heuristic. It only stores the current state (has no 
frontier data structure) and just stops at a dead end. 
Is it complete/optimal?

• No – can get stuck in local optima.

ℎ =  1

Example: local optimum for the 8-
queens problem. No single queen 
can be moved within its column 
to improve the objective 
function.

Simple approach that can help with local optima:
Random-restart hill climbing: Restart hill-climbing many times with random 
initial states and return the best solution. This strategy can be used for any 
stochastic (i.e., randomized) algorithm.



The State Space “Landscape”

Neighbors placed 
next to each other

𝑢𝑢 𝑠𝑠

𝑠𝑠

Maximization

How to escape local maxima?
 Random restart hill-climbing can help.

What about “shoulders” (called “ridges” in higher-dimensional spaces)?
 Hill-climbing that allows sideways moves and uses momentum.



Minimization vs. Maximization
• The name hill climbing used in AI implies maximizing a function.
•  Optimizers often prefer to state problems as minimization problems 

and refer to hill climbing as gradient descent.
• Minimization and maximization are equivalent problems:

ma𝑥𝑥 𝑓𝑓 𝑥𝑥                   ⟺ min −𝑓𝑓 𝑥𝑥  



Convex vs. Non-Convex Optimization Problems

Non-convex Problem

Many local optima  hard
One global optimum + 

continuous smooth function 
 calculus makes it easy 

(solve 𝑓𝑓′ 𝑥𝑥 = 0)

Convex Problem

Many AI problems are in addition discrete 
(the objective function is not differentiable). 
We often have to settle for a local optimum.

Minimization



Simulated Annealing
Using heat to escape local optima…



Idea of Simulated Annealing
• Use first-choice stochastic hill climbing + escape local minima by allowing 

some “bad” moves but gradually decreasing their frequency.
• Inspired by the process of controlled cooling of glass or metals. Decreasing 

the temperature means decreasing the chance of accepting bad moves.
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Simulated Annealing Algorithm
• Use first-choice stochastic hill climbing + escape local minima by allowing some “bad” 

moves but gradually decreasing their frequency as we get closer to the solution.
• Annealing tries to reach a low energy state: A negative Δ𝐸𝐸 means the solution gets 

better.
•  The probability of accepting “bad” moves follows the annealing schedule, which reduces 

the temperature 𝑇𝑇 over time 𝑡𝑡.

Note: Use 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) –  𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) for minimization

Typically, we start with a random state

Maximization

if Δ𝐸𝐸 ≤  0 then Accept “bad” moves with a 
probability  inspired by the 
acceptance criterion in the 
Metropolis–Hastings MCMC 
algorithm.

Always accept good moves 
that reduce the energy.



The Effect of Temperature

-∆E
←solution gets worse
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Convert the changes due to “bad” moves into an acceptance probability depending
on the temperature. The criterion uses the negative part of the exponential function.



Cooling Schedule

The cooling schedule is very important. 
Popular schedules for the temperature at time 𝑡𝑡:

• Classic simulated annealing:  𝑇𝑇𝑡𝑡 = 𝑇𝑇0
1

log(1+𝑡𝑡)

• Exponential cooling  (Kirkpatrick, Gelatt and Vecchi; 1983) 

𝑇𝑇𝑡𝑡 = 𝑇𝑇0𝛼𝛼𝑡𝑡     for    0.8 < 𝛼𝛼 < 1 

• Fast simulated annealing (Szy and Hartley; 1987) 

𝑇𝑇𝑡𝑡 = 𝑇𝑇0
1

1 + 𝑡𝑡
Notes:

• Choose 𝑇𝑇0 to provide a high probability 𝑝𝑝0 = 𝑒𝑒−
Δ𝐸𝐸
𝑇𝑇0  that any move will be accepted at time 

𝑡𝑡 =  0. Δ𝐸𝐸 is determined by the worst possible move.
• 𝑇𝑇𝑡𝑡 will not become 0 but very small. Stop when 𝑇𝑇 < 𝜖𝜖 (𝜖𝜖 is a very small constant).
• The best schedule (cooling rate) is typically determined by trial-and-error. The goal is to 

have a low chance of getting stuck in a local optima.



Simulated Annealing Search

Guarantee
If the temperature is decreased slowly enough, then 
simulated annealing search will find a global 
optimum with a probability approaching one.

However:
• This usually takes an impractically long time.
• The best cooling schedule and local move need to be 

determined experimentally.



Evolutionary Algorithms
A Population-based Metaheuristics



Evolutionary Algorithms / Genetic Algorithms

• A metaheuristic for population-based optimization.  
• Uses mechanisms inspired by biological evolution (genetics):

• Reproduction: Random selection with probability based on a 
fitness function.

• Random recombination (crossover)
• Random mutation
• Repeated for many generations

• Example: 8-queens problem

next generation

Individual = state
representation as 

a chromosome: 
row of the queen 
in each column

8
7
6
5
4
3
2
1



Search in Continuous Spaces



Methods: Discretization of Continuous Space 

• Use atomic states and create a graph as the transition function.

• Use a grid with spacing of size 𝛿𝛿
Note: You probably need a way
           finer grid!
      

x

y

𝛿𝛿



Example: Discretization of Continuous Space 

How did we discretize this space?   
Initial state

Goal 
state

Discretization grid



State representation: 𝒙𝒙 = 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑘𝑘
State space size: infinite
Objective function: min 𝑓𝑓 𝒙𝒙
Local neighborhood: small changes in 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑘𝑘

Gradient at point 𝒙𝒙:   ∇𝑓𝑓 𝒙𝒙 = 𝜕𝜕𝜕𝜕 𝒙𝒙
𝜕𝜕𝑥𝑥1

, 𝜕𝜕𝜕𝜕 𝒙𝒙
𝜕𝜕𝑥𝑥2

, …, 𝜕𝜕𝜕𝜕 𝒙𝒙
𝜕𝜕𝑥𝑥𝑘𝑘

           (=evaluation of the Jacobian matrix at 𝒙𝒙)

Find optimum by solving: ∇𝑓𝑓 𝒙𝒙 = 0

• Gradient descent (= Steepest-ascend hill climbing for minimization)  
with step size 𝛼𝛼 (typically reduced over time)

Repeat: 𝒙𝒙 ← 𝒙𝒙 − 𝛼𝛼∇𝑓𝑓 𝒙𝒙   

• Newton-Raphson method
uses the inverse of the Hessian matrix (second-order partial derivative of 𝑓𝑓 𝒙𝒙 )

 𝐻𝐻𝑖𝑖𝑖𝑖 = 𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥𝑖𝑖𝜕𝜕𝑥𝑥𝑗𝑗

 as the optimal step size

 Repeat: 𝒙𝒙 ← 𝒙𝒙 − 𝑯𝑯𝑓𝑓
−1(𝒙𝒙)∇𝑓𝑓 𝒙𝒙

Note: May get stuck in a local optimum if the search space is non-convex! Use simulated annealing, momentum or other 
methods to escape local optima.

𝑓𝑓(𝒙𝒙)

𝑥𝑥1 𝑥𝑥2

Search in Continuous Spaces: 
Gradient Descent

∇𝑓𝑓 𝒙𝒙



Search in Continuous Spaces: 
Stochastic Gradient Descent

• What if the mathematical formulation of the objective function is not 
known?

• We may have objective values at fixed points, called the training data.

• In this case, we can perform gradient descent with an approximation of 
the gradient using the data points as a sample. This is called stochastic 
gradient descent (SGD). 

 We will talk more about search in continuous spaces with loss functions 
using gradient descent when we discuss parameter learning for learning 
from examples (machine learning). 



Conclusion

• Local search provides a fast method to 
find good solutions to many difficult 
optimization problems.

• Local optima are a big issue that can be 
addressed with random restarts and 
simulated annealing.
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