
CS 5/7320 
Artificial Intelligence

Search with 
Uncertainty
AIMA Chapters 4.3-4.5

Slides by Michael Hahsler
with figures from the AIMA textbook

This work is licensed under a Creative Commons 
Attribution-ShareAlike 4.0 International License. Online Material

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/


Remember: Solving Search 
Problems under Certainty

No Uncertainty

• Deterministic 
actions with known 
transition model
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑠𝑠1, 𝑎𝑎 = 𝑠𝑠4

• Full observability 
(we know where 
everything is while 
planning)

Goal states

Initial state

State space: A state completely describes the 
environment and agent

Solution of the planning phase is a sequence of actions also called a plan that can be 
blindly followed: [Suck, Right, Suck] 



Consequence of Uncertainty

1. The agent may not know in what state it and the 
environment exactly is in. 

It needs to keep track of all the states it could be 
in. This set is called the believe state.

2. The solution is typically not a fixed precomputed 
plan (sequence of actions), but a 

  conditional plan (also called strategy or policy) 

that depends on percepts.



Types of 
uncertainty in the 
environment*

Nondeterministic Actions:
Outcome of an action in a state is 
uncertain.

No observations: 
Sensorless problem

Partially observable environments: 
The agent does not know in what 
state the environment is.

Exploration:
Unknown environments and 
Online search

* we will quantify uncertainty with 
probabilities later.



Nondeterministic Actions



Definition: Nondeterministic Actions

Outcome of actions in the environment is 
nondeterministic = transition model need to 
describe uncertainty.

Example transition: 

  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑠𝑠1,𝑎𝑎 = 𝑠𝑠2, 𝑠𝑠4, 𝑠𝑠5  

i.e., action 𝑎𝑎 in 𝑠𝑠1 can lead to one of several states. 

Note the ‘s’ here



Example:
Erratic Vacuum World

Regular deterministic vacuum world, but the action 
‘suck’ is more powerful and nondeterministic:

a) On a dirty square: cleans the square and 
sometimes cleans dirt on adjacent squares as 
well.

b) On a clean square: sometimes deposits some dirt 
on the square.



Example: 
Erratic Vacuum World

We need a conditional plan
 [Suck, if State = 5 then [Right, Suck] else []]

Start State

Goal states

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 1, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 5, 7  



Finding a Cond. Plan: AND-OR Search Tree

LOOP: No need to 
continue search. 

Solution is the 
same as above.

Suck

Suck

Right

OR

AND

OR node (choose one action)

AND node (all possible outcomes)

Solution is shown with bold arrows:
[Suck, if State = 5 then [Right, Suck] else []]

Solution is a subtree that
1. has only GOAL leaf nodes
2. specifies one action at each OR node (state)
3. includes every outcome of AND nodes



AND-OR Tree search: Idea

• Descend the tree by trying an 
action in each OR node and 
considering all resulting states 
of the AND nodes. 

• Remove branches (actions) if 
we cannot find a subtree 
below that leads to only goal 
nodes. (see failure in the code 
on the next slide). Loop nodes 
can be ignored.

• Stop when we find a subtree 
that only has goal states in all 
leaf nodes.

• Construct the conditional plan 
that represents the subtree 
starting at the root node.

Suck

Suck

Right

[Suck, if State = 5 then [Right, Suck] else []]

OR node

AND node



AND-OR Recursive DFS Algorithm

Notes: 
• The DFS search tree is implicitly created using the call stack (recursive algorithm).
• DFS is not optimal! BFS and A* search can be used to find better solutions (e.g., smallest subtree).

// don’t follow loops using path.  
// try all possible actions

// try all possible outcomes, none can fail!
// (= belief state)
// fail if we find any non-goal subtree

= nested If-then-else statements

path is only maintained for cycle checking!

// fail means we found no action that leads to 
// a goal-only subtree



Use of Conditional Plans
• Planning uses search to find a conditional plan that leads to a goal state. 
• The conditional plan can be executed by a model-based agent that uses 

a program counter to execute the plan and percepts for the if 
statements.  

[Suck, 
  if State = 5 then 
    [Right, 
      Suck] 
  else 
     []
]

Step 2

2
3
4

Step
1

4b

Agent’s State
(= program counter)

Cond. PlanAgent

Example: After the initial action “suck”



Search With No 
Observations

Using Actions to 
“Coerce” the World into 

Known States



No Observations

Sensorless problem = unobservable environment also 
called a conformant problem.

Why is this useful?

• Example: Doctor prescribes a broad-band antibiotic 
instead of performing time-consuming blood work for a 
more specific antibiotic. This saves time and money.

• Basic idea: Find a solution (a sequence of actions) that 
works (reasonably well) from any state and then just 
blindly execute it (called in control theory: open loop system).



Belief State

• The agent does not know in which state it is exactly in.
• However, it may know that it is in one of a set of possible states. 

This set is called a belief state of the agent. 
• Example: b = 𝑠𝑠2, 𝑠𝑠4, 𝑠𝑠6

b

?



Actions to Coerce the 
World into States

right

Initial belief state {1,2,3,4,5,6,7,8}

Goal
states

• Actions can reduce the number of possible states.
• Example: Deterministic vacuum world. Agent does not know 

its position and the dirt distribution.

?



Actions to Coerce the 
World into States 
• Actions can reduce the number of possible states.
• Example: Deterministic vacuum world. Agent does not know 

its position and the dirt distribution.

suck

?



Actions to Coerce the 
World into States 2
• The action sequence [right, suck, left, suck] coerces the 

world into the goal state 7. It works from any initial state!
• There are no observations so there is no need for a 

conditional plan.

[right, 
suck, 
left, 

suck]

?



Example: The reachable belief-state 
space for the deterministic, 
sensorless vacuum world

No observations, so we 
get a solution sequence 

from an initial belief 
state:

[Right, Suck, Left, Suck] 

Initial 
belief 
state

Size of the belief state 
space depends on the 
number of states 𝑁𝑁:

𝒫𝒫𝑠𝑠 = 2𝑁𝑁 = 28 = 256

Only a small fraction 
(12 states) are 
reachable.

?



Finding a Solution Sequence

Formulate as a regular search and solve with DFS, BFS or A*:
• States: All belief states (=powerset 𝒫𝒫𝑠𝑠 of states of size 2𝑁𝑁 for N states)
• Initial state: Often the belief state consisting of all states.
• Actions: Actions of a belief state are the union of the possible actions for all the 

states it contains.
• Transition model: 𝑏𝑏′ = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑏𝑏, 𝑎𝑎 = {𝑠𝑠′: 𝑠𝑠′ = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑠𝑠, 𝑎𝑎  𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠 ∈ 𝑏𝑏}
• Goal test: Are all states in the belief state goal states?
• Simplifying property: If a belief state (e.g., 𝑏𝑏1 = {1,2,3,4,5}) is solvable (i.e., 

there is a sequence of actions that coerce all states to only goal states), then 
belief states that are subsets (e.g., 𝑏𝑏2  =  {2,5}) are also solved using the same 
action sequence. Used to prune the search tree.

Other approach: 
• Incremental belief-state search. Generate a solution that works for one state 

and check if it also works for all other states. If it does not, then modify the 
solution slightly. This is similar to local search.

Note: State space size makes this 
impractical for larger problems!



Case Study
x

Goal
location

3m

8m

2m 1m

Agent

The agent can move up, down right, left.

The agent has no sensors and does not 
know its current location.

1. Can you navigate to the goal location? 
How?

2. What would you need to know about 
the environment?

3. What type of agent can do this?



Partially Observable 
Environments

Using Observations to 
Learn About the State



Percepts and Observability

• Many problems cannot be solved efficiently 
without sensing (e.g., 8-puzzle). 

• We need to see at least one square.

Percept function: 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑠𝑠
          …𝑠𝑠 is the state

• Fully observable: 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑠𝑠 = 𝑠𝑠
• Sensorless: 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑠𝑠 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
• Partially observable: 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑠𝑠 = 𝑜𝑜
𝑜𝑜 is called an observation and tells us something about 𝑠𝑠

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑠𝑠 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

Problem: Many 
states (different 

order of the hidden 
tiles) can produce the 

same observation!



Use Observations to Learn 
About the State

Assume we have a current belief state 𝑏𝑏 (i.e., the set of states we could be in).
Prediction for action: Choose an action 𝑎𝑎 and compute a new belief state that results 
from the action.

�𝑏𝑏 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑏𝑏, 𝑎𝑎 = �
𝑠𝑠∈𝑏𝑏

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑠𝑠, 𝑎𝑎)

Update with observation: You receive an observation 𝑜𝑜 and only keep states that are 
consistent with the new observation. The belief after observing 𝑜𝑜 is:

𝑏𝑏𝑜𝑜 = 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 �𝑏𝑏, 𝑜𝑜 = {𝑠𝑠 ∶  𝑠𝑠 ∈ �𝑏𝑏  ∧  𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑠𝑠 = 𝑜𝑜}

Both steps in one:                𝑏𝑏 ← 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑏𝑏, 𝑎𝑎), 𝑜𝑜

Update with 
observation 𝑜𝑜

Prediction for 
action 𝑎𝑎 𝑏𝑏

Agents choose an action and then receive an observation. 
Idea: Observations can be used to learn about the agent’s 
state.



Example: Deterministic local 
sensing vacuum world

Predict for 
action a

Update with 
observation 𝑜𝑜

[B,Dirty]

Update with 
observation 𝑜𝑜

Prediction for 
action 𝑎𝑎 𝑏𝑏

?

?

𝑏𝑏 ← 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  𝑏𝑏 , 𝑎𝑎 ,  𝑜𝑜 
 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 1,3 ,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 , [𝐵𝐵,𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷] = {2}



Solving Partially 
Observable Problems
Use an AND-OR tree of belief states to create a 
conditional plan

Solution: [Suck, Right, if b = {6} then Suck else []]

[A,Clean] [B,Clean][B,Dirty]

OR

AND
AND

Initial 
belief state



Solving Partially 
Observable Problems 2
Use an AND-OR tree to create a conditional plan

Solution: [Suck, Right, if b = {6} then Suck else []]

[A,Clean] [B,Clean][B,Dirty]

OR

AND
AND

predict
update



Solving Partially 
Observable Problems 3
Use an AND-OR tree to create a conditional plan

Solution: [Suck, Right, if b = {6} then Suck else []]

[A,Clean] [B,Clean][B,Dirty]

OR

AND
AND

…

predict
update



Solving Partially 
Observable Problems 4
Use an AND-OR tree to create a conditional plan

Solution: [Suck, Right, if b = {6} then Suck else []]

[A,Clean] [B,Clean][B,Dirty]

OR

AND
AND

…

predict
update

b = {6} is the result of the 
update with o = [r, Dirty]



State Estimation and 
Approximate Belief States

• Agents choose an action and then receive an observation from the 
environment.

• The agent keep track of its belief state using the following update:

𝑏𝑏 ← 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑏𝑏, 𝑎𝑎 , 𝑜𝑜

• This process is often called
• monitoring,
• filtering, or
• state estimation.

• The agent needs to be able to update its belief state following observations in 
real time! For many practical application, there is only time to compute an 
approximate belief state! These approximate methods are used in control 
theory and reinforcement learning.

Update with 
observation 𝑜𝑜

Prediction for 
action 𝑎𝑎 𝑏𝑏



Case Study: 
Partially 
Observable 
8-Puzzle



Partially Observable 
8-Puzzle
1. Give a problem description for each step.

• States:
• Initial state:
• Actions:
• Transition model:
• Goal test:
• Percept function:

2. The problem can be solved using an AND-
OR Tree, but is there an easier solution?

a. What type of agent do we use?

b. What algorithms can be used?



Exploration
Unknown Environment and 

Online Search



Online Search
• Recall offline search: Create a plan using the state space as a model before 

taking any action. The plan can be a sequence of actions or a conditional plan 
to account for uncertainty.

• The agent uses the transition function to predict the consequence of actions. 
What if the transition function is unknown?

• Online search explores the real world one action at a time. Prediction is 
replaced by “act” and update by “observe.” 

• Useful for
• Real-time problems: When offline computation takes too long and there is a penalty for 

sitting around and thinking.
• Nondeterministic domain: Only focus on what happens instead of planning for everything!
• Unknown environment: The agent has no complete model of how the environment works. 

It needs to explore an unknown state space and/or what actions do. I.e., it needs to learn 
the transition function 𝑓𝑓 ∶ 𝑆𝑆 × 𝐴𝐴 → 𝑆𝑆

Act Observe Act Observe Act …



Design Considerations for
Online Search
• Knowledge: What does the agent already know about the 

outcome of actions? E.g., 
• Does go north and then south lead to the same location?
• Where are the walls in the maze?

    Often a part or all of the transition function is unknown!

• We need a safely explorable state space/world: There are 
no irreversible actions (e.g., traps, cliffs) or the agent needs 
to be able to avoid these actions using percepts.

• Exploration order is important: Expanding nodes in local 
order is more efficient if you must execute the actions to get 
observations: Depth-first search with backtracking instead 
of BFS or A* Search.

Transition 
function



Online Search:  Model-based Agent 
Program for Unknown Transition model
Environment is deterministic and fully observable (the percept is the full state) but 
• unknown transition model (function 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟).
Approach: The agent builds the map 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑠𝑠, 𝑎𝑎 → 𝑠𝑠𝑠 by trying all actions and backtracks when all 
actions in a state have been explored.

Learns results function 
(= transition function)

Untried is the “frontier”

Record the found transition

Keep breadcrumbs to go back 

unbacktracked  stores the current path



Case Study: DFS with Backtracking 
for an unknown Maze
• We can only see 

adjacent squares and 
don’t know the location 
of the goal!

• We cannot plan but we 
must explore by walking 
around! 

• We only know what we 
have already explored.

• A simple method is to 
store the path for 
backtracking to get back 
to untied paths when 
we run into a dead end 
(i.e., use breadcrumbs).

• This is DFS without a 
reached data structure.

Start

The 
transition 
function is 
unknown.

unbacktracked

untried 
(~ frontier)

Agent



Important concepts that you 
should be able to explain and 
use now…

• Difference between solution types:
a.  a fixed actions sequence,
b.  a conditional plan (also called a strategy or 

policy), and
c. exploration.

• What are belief states?

• How actions can be used to coerce the world into 
known states.

• How observations can be used to learn about the 
state: State estimation with repeated predict and 
update steps.

• The use of AND-OR trees to solve small problems.


	CS 5/7320 �Artificial Intelligence��Search with Uncertainty�AIMA Chapters 4.3-4.5
	Remember: Solving Search Problems under Certainty
	Consequence of Uncertainty
	Types of uncertainty in the environment*
	Nondeterministic Actions
	Definition: Nondeterministic Actions
	Example:�Erratic Vacuum World
	Example: �Erratic Vacuum World
	Finding a Cond. Plan: AND-OR Search Tree
	AND-OR Tree search: Idea
	AND-OR Recursive DFS Algorithm
	Use of Conditional Plans
	Search With No Observations
	No Observations
	Belief State
	Actions to Coerce the �World into States
	Actions to Coerce the �World into States 
	Actions to Coerce the �World into States 2
	Example: The reachable belief-state space for the deterministic, sensorless vacuum world
	Finding a Solution Sequence
	Case Study
	Partially Observable Environments
	Percepts and Observability
	Use Observations to Learn About the State
	Example: Deterministic local sensing vacuum world
	Solving Partially Observable Problems
	Solving Partially Observable Problems 2
	Solving Partially Observable Problems 3
	Solving Partially Observable Problems 4
	State Estimation and �Approximate Belief States
	Case Study: Partially Observable 8-Puzzle
	Partially Observable 8-Puzzle
	Exploration
	Online Search
	Design Considerations for�Online Search
	Online Search:  Model-based Agent Program for Unknown Transition model
	Case Study: DFS with Backtracking for an unknown Maze
	Important concepts that you should be able to explain and use now…

