
CS 5/7320 
Artificial Intelligence

Adversarial Search 
and Games
AIMA Chapter 5

Slides by Michael Hahsler
with figures from the AIMA textbook

"Reflected Chess pieces"
by Adrian Askew

This work is licensed under a Creative Commons 
Attribution-ShareAlike 4.0 International License. Online Material

https://www.flickr.com/photos/58182080@N04/6918664049
https://www.flickr.com/photos/58182080@N04
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/


Contents

What are two-
player zero-sum 

games with 
deterministic 

game mechanics?

Games as 
Search Problems

Exact Methods

Non-deterministic 
Actions

 Minimax Search

Heuristic Methods

Heuristic Alpha-
Beta Tree Search

Monte Carlo Tree 
search

Stochastic Games



Games

• Games typically confront the agent with a 
competitive (adversarial) environment affected by 
an opponent (strategic environment).

• Games are episodic.
• We will focus on planning for

• two-player zero-sum games with 
• deterministic game mechanics and 
• perfect information (i.e., fully observable environment).

• We call the two players: 
1) Max tries to maximize his utility.
2) Min tries to minimize Max’s utility since it is 

a zero-sum game.



Definition of a Game

Definition:
𝑠𝑠0  The initial state (position, board, hand).
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑠𝑠(𝑠𝑠) Legal moves in state 𝑠𝑠. 
𝑅𝑅𝑅𝑅𝑠𝑠𝑅𝑅𝑅𝑅𝐴𝐴(𝑠𝑠,𝑎𝑎) Transition model.
𝑇𝑇𝑅𝑅𝑒𝑒𝑒𝑒𝐴𝐴𝐴𝐴𝑎𝑎𝑅𝑅(𝑠𝑠) Test for terminal states.
𝑈𝑈𝐴𝐴𝐴𝐴𝑅𝑅𝐴𝐴𝐴𝐴𝑈𝑈(𝑠𝑠) Utility for player Max for terminal states.



Example: Tic-tac-toe

𝑠𝑠0   Empty board.
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑠𝑠(𝑠𝑠)  Play empty squares.
𝑅𝑅𝑅𝑅𝑠𝑠𝑅𝑅𝑅𝑅𝐴𝐴(𝑠𝑠,𝑎𝑎)  Symbol (x/o) is placed on empty square.
𝑇𝑇𝑅𝑅𝑒𝑒𝑒𝑒𝐴𝐴𝐴𝐴𝑎𝑎𝑅𝑅(𝑠𝑠)  Did a player win or is the game a draw?
𝑈𝑈𝐴𝐴𝐴𝐴𝑅𝑅𝐴𝐴𝐴𝐴𝑈𝑈(𝑠𝑠)  +1 if x wins, -1 if o wins and 0 for a draw.
   Utility is only defined for terminal states.

Here player x is Max 
and player o is Min.

Note: This game still uses a goal-based agent that 
plans actions to reach a winning terminal  state!



Games as Search Problems

• Making a move is a decision problem that can be 
addressed as a search problem. We need to search for 
sequences of moves that lead to a winning position.

• Search problems have a state space: a graph defined 
by the initial state and the transition function 
containing all reachable states (e.g., chess positions).

• For games we consider a game tree: A complete game 
tree follows every sequence from the current state to 
the terminal state (the game ends). It consists of the set 
of paths through the state space representing all 
possible games that can be played.



Tic-tac-toe: Partial Game Tree

1

9

9 × 8
  

# of nodes

action / result

state / node

redundant path

Terminal states 
have a known 

utility

Note: This game 
has no cycles!

The state space size (number of 
possible boards) is much smaller 
than:

39 = 19,683 states.

However, the complete game tree is 
much larger because the same state 
(board) can be reached in different 
subtrees (redundant paths). The game 
tree here is a little smaller than:

1 + 9 ×  8 + 9 × 8 × 7 + ⋯ 9!
= 986,409 nodes



Methods for 
Adversarial 

Games

Exact Methods
• Model as nondeterministic actions: The 

opponent is seen as part of an 
environment with nondeterministic 
actions. Non-determinism is the result of 
the unknown moves by the opponent. We 
consider all possible moves by the 
opponent.

• Find optimal decisions: Minimax search 
and Alpha-Beta pruning where each 
player plays optimally to the end of the 
game.

Heuristic Methods 
(game tree is too large)

• Heuristic Alpha-Beta Tree Search: 
a. Cut off game tree and use 

heuristic for utility. 
b. Forward Pruning: ignore poor 

moves.

• Monte Carlo Tree search: Estimate utility 
of a state by simulating complete games 
and average the utility.



Nondeterministic Actions

Recall AND-OR Search from AIMA Chapter 4



Methods 
for 
Adversarial 
Games

Exact Methods

• Model as nondeterministic actions: The 
opponent is seen as part of an environment with 
nondeterministic actions. Non-determinism is the 
result of the unknown moves by the opponent. 
We consider all possible moves by the opponent.

• Find optimal decisions: Minimax search and 
Alpha-Beta pruning where each player plays 
optimally to the end of the game.

Heuristic Methods 
(game tree is too large)

• Heuristic Alpha-Beta Tree Search: 
a. Cut off game tree and use heuristic for 

utility. 
b. Forward Pruning: ignore poor moves.

• Monte Carlo Tree search: Estimate utility of a 
state by simulating complete games and average 
the utility.



Each action consists of the move by the 
player and all possible (i.e., nondeterministic) 
responses by the opponent.

Recall: Nondeterministic Actions
For planning, we do not know what the opponents moves will 
be. We have already modeled this issue using 
nondeterministic actions.

Outcome of actions in the environment is nondeterministic = 
transition model need to describe uncertainty about the 
opponent's behavior.

Example transition: 

  𝑅𝑅𝑅𝑅𝑠𝑠𝑅𝑅𝑅𝑅𝐴𝐴𝑠𝑠 𝑠𝑠1,𝑎𝑎 = 𝑠𝑠2, 𝑠𝑠4, 𝑠𝑠5  

i.e., action 𝑎𝑎 in 𝑠𝑠1 can lead to one of several states (which is 
called a belief state of the agent). 



Recall: AND-OR DFS Search Algorithm

// don’t follow loops

// check all possible actions

// check all possible current states

= nested If-then-else statements

my 
moves

Go through
opponent

moves

all states that can result from 
opponent’s moves

abandon subtree if a loss is found



Tic-tac-toe: AND-OR Search
We play MAX and decide on our actions (OR). 
MIN’s actions introduce non-determinism (AND).

OR

OR

AND

AND

Pick an action that leads to a 
subtree with only win leaves.

1

2

3

Depth (ply)
0

m

Objective: Find a subtree that has only win 
leaf nodes (utility +1). We can abandon a 
subtree if we find a single loss (utility -1).

We call playing always the best move 
playing optimally. Since we consider all 
the opponent’s moves in the AND stage, 
we also  includes MIN’s best move. This 
means we consider MIN playing optimally.



Optimal Decisions
Minimax Search and Alpha-Beta Pruning



Methods 
for 
Adversarial 
Games

Exact Methods

• Model as nondeterministic actions: The 
opponent is seen as part of an environment with 
nondeterministic actions. Non-determinism is the 
result of the unknown moves by the opponent. 
We consider all possible moves by the opponent.

• Find optimal decisions: Minimax search and 
Alpha-Beta pruning where each player plays 
optimally to the end of the game.

Heuristic Methods 
(game tree is too large)

• Heuristic Alpha-Beta Tree Search: 
a. Cut off game tree and use heuristic for 

utility. 
b. Forward Pruning: ignore poor moves.

• Monte Carlo Tree search: Estimate utility of a 
state by simulating complete games and average 
the utility.



Idea: Minimax Decision

• Assign each state 𝑠𝑠 a minimax value that reflects the utility 
realized if both players play optimally from 𝑠𝑠 to the end of 
the game:

𝑀𝑀𝐴𝐴𝐴𝐴𝐴𝐴𝑒𝑒𝑎𝑎𝑀𝑀 𝑠𝑠 =

𝑈𝑈𝐴𝐴𝐴𝐴𝑅𝑅𝐴𝐴𝐴𝐴𝑈𝑈 𝑠𝑠  if 𝐴𝐴𝑅𝑅𝑒𝑒𝑒𝑒𝐴𝐴𝐴𝐴𝑎𝑎𝑅𝑅(𝑠𝑠)
max

𝑎𝑎∈𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴
𝑀𝑀𝐴𝐴𝐴𝐴𝐴𝐴𝑒𝑒𝑎𝑎𝑀𝑀 𝑅𝑅𝑅𝑅𝑠𝑠𝑅𝑅𝑅𝑅𝐴𝐴 𝑠𝑠, 𝑎𝑎  if 𝑒𝑒𝐴𝐴𝑚𝑚𝑅𝑅 = 𝑀𝑀𝑎𝑎𝑀𝑀

min
𝑎𝑎∈𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴

𝑀𝑀𝐴𝐴𝐴𝐴𝐴𝐴𝑒𝑒𝑎𝑎𝑀𝑀 𝑅𝑅𝑅𝑅𝑠𝑠𝑅𝑅𝑅𝑅𝐴𝐴 𝑠𝑠,𝑎𝑎  if 𝑒𝑒𝐴𝐴𝑚𝑚𝑅𝑅 = 𝑀𝑀𝐴𝐴𝐴𝐴

• This is a recursive definition which can be solved from 
terminal states backwards.

• The optimal decision for Max is the action that leads to the 
state with the largest minimax value. That is the largest 
possible utility if both players keep playing optimally.



Minimax Search: Back-up 
Minimax Values

= minimax value (MV)

1 1

1

max

min
…

MV MV

MV MV MV MV MV MV MV MV MV

min

0 

Pick action that leads to the largest MV

Determine MVs using a bottom-
up strategy

• Max always picks the action 
that has the largest value.

• Min always picks the action 
that has the smallest value.



 
Approach: Follow tree to each 
terminal node and back up 
minimax value.

Note: This is just a generalization 
of the AND-OR Tree Search and 
returns the first action of the 
conditional plan.

Represents 
OR Search

Represents 
AND Search

Find the action that 
leads to the best value.



Exercise: Simple 2-Ply Game

2 0 5 -5 -2 7 5 -7 4Utility for Max

Max

Min

𝑎𝑎1 𝑎𝑎2 𝑎𝑎3

𝑎𝑎1 𝑎𝑎2
𝑎𝑎3

𝑎𝑎1
𝑎𝑎2

𝑎𝑎3 𝑎𝑎1
𝑎𝑎2

𝑎𝑎3

MV

MV MV MV

• Compute all MV (minimax values).
• How do we traverse the game tree? What is the Big-O notation for time and space?
• What is the optimal action for Max?



Issue: Game Tree Size
• Minimax search traverses the complete game tree using DFS!

Space complexity: 𝑂𝑂 𝑏𝑏𝑒𝑒
Time complexity: 𝑂𝑂 𝑏𝑏𝑚𝑚

• Fast solution is only feasible for very simple games with few possible moves 
(=small branching factor) and few moves till the game is over (=low maximal 
depth)!

• Example: Tic-tac-toe 
𝑏𝑏 =  9,𝑒𝑒 =  9 → 𝑂𝑂 99 = 𝑂𝑂(387,420,489)

          
 𝑏𝑏 decreases from 9 to 8, 7, … the actual size is smaller than:

1 9 9 ×  8 9 × 8 × 7 … 9! = 986,409 nodes

• We need to reduce the search space! → Game tree pruning

b: max branching factor
m: max depth of tree



Alpha-Beta Pruning

• Idea: Do not search parts of the tree if they do not make a 
difference to the outcome.

• Observations: 
• min(3, 𝑀𝑀,𝑈𝑈) can never be more than 3 
• max(5, min(3, 𝑀𝑀,𝑈𝑈, … )) is always 5 and does not depend on the 

values of 𝑀𝑀 or 𝑈𝑈.
• Minimax search applies alternating min and max.

• Approach: maintain bounds for the minimax value 
[𝛼𝛼,𝛽𝛽] and prune subtrees (i.e., don’t follow actions) that do 
not affect the current minimax value bound.

• Alpha is used by Max and means “𝑀𝑀𝐴𝐴𝐴𝐴𝐴𝐴𝑒𝑒𝑎𝑎𝑀𝑀(𝑠𝑠) is at least 𝛼𝛼.”
• Beta is used by Min and means “𝑀𝑀𝐴𝐴𝐴𝐴𝐴𝐴𝑒𝑒𝑎𝑎𝑀𝑀(𝑠𝑠) is at most 𝛽𝛽.”



Example: Alpha-Beta Search
Max

Min

[𝛼𝛼,β] Max updates α 
(utility is at least)

Min updates 𝛽𝛽
(utility is at most)

Utility cannot be 
more than 2 in the 

subtree, but we 
already can get 3 

from the first 
subtree. Prune the 

rest.

Min

Max

Min

Min

Min Min

Max

Max

Max

Max Once a subtree is 
fully evaluated, 
the interval has a 
length of 0 
(𝛼𝛼 = 𝛽𝛽).

𝑚𝑚 = 3

𝑚𝑚 = 2

𝑚𝑚 = 3
[ 3, +∞ ]

𝑚𝑚 ≤ 2



 
= minimax search + pruning

Abandon subtree if Max finds an 
actions that has more value than 
the best-known move Min has in 

another subtree.

// v is the minimax value

Found a better action?

Found a better action?

Abandon subtree if Min finds an 
actions that has less value than 

the best-known move Max has in 
another subtree.



Exercise: Simple 2-Ply Game with 
Alpha-Beta Pruning

• Find the [𝛼𝛼,𝛽𝛽] intervals for all nodes.
• What is the optimal move sequence?
• What part of the tree can be pruned?

-5 2 5 7 0 2 5 -7 -4Utility for Max

Max

Min

𝑎𝑎1 𝑎𝑎2 𝑎𝑎3

𝑎𝑎1 𝑎𝑎2
𝑎𝑎3

𝑎𝑎1
𝑎𝑎2

𝑎𝑎3 𝑎𝑎1
𝑎𝑎2

𝑎𝑎3

[𝛼𝛼,𝛽𝛽]

[𝛼𝛼,𝛽𝛽] [𝛼𝛼,𝛽𝛽] [𝛼𝛼,𝛽𝛽]



Move Ordering for Alpha-Beta Search

• Idea: Pruning is more effective if good alpha-beta bounds can be 
found in the first few checked subtrees.

• Move ordering for DFS = Check good moves for Min and Max 
first.

• We need expert knowledge or some heuristic to determine what 
a good move is.

• Issue: Optimal decision algorithms still scale poorly even when 
using alpha-beta pruning with move ordering.



Exercise: Simple 2-Ply Game with Alpha-
Beta Pruning and Move ordering

• Find the [𝛼𝛼,𝛽𝛽] intervals for all nodes using the move ordering.
• What is the optimal move sequence?
• What part of the tree can be pruned?

-5 2 5 7 0 2 5 -7 -4Utility for Max

Max

Min

𝑎𝑎1 𝑎𝑎2 𝑎𝑎3

𝑎𝑎1 𝑎𝑎2
𝑎𝑎3

𝑎𝑎1
𝑎𝑎2

𝑎𝑎3 𝑎𝑎1
𝑎𝑎2

𝑎𝑎3

[𝛼𝛼,𝛽𝛽]

[𝛼𝛼,𝛽𝛽] [𝛼𝛼,𝛽𝛽] [𝛼𝛼,𝛽𝛽]

• Assume a heuristic shoes that we 
should order the moves: 𝑎𝑎2, 𝑎𝑎1, 𝑎𝑎3



Heuristic Alpha-Beta 
Tree Search



Methods 
for 
Adversarial 
Games

Exact Methods

• Model as nondeterministic actions: The 
opponent is seen as part of an environment with 
nondeterministic actions. Non-determinism is the 
result of the unknown moves by the opponent. 
We consider all possible moves by the opponent.

• Find optimal decisions: Minimax search and 
Alpha-Beta pruning where each player plays 
optimally to the end of the game.

Heuristic Methods 
(game tree is too large or search takes too long)

• Heuristic Alpha-Beta Tree Search: 
a. Cut off game tree and use heuristic for 

utility. 
b. Forward Pruning: ignore poor moves.

• Monte Carlo Tree search: Estimate utility of a 
state by simulating complete games and average 
the utility.



Cutting off search
Reduce the search cost by restricting the search depth:
1. Stop search at a non-terminal node.
2. Use a heuristic evaluation function 𝐸𝐸𝑚𝑚𝑎𝑎𝑅𝑅 𝑠𝑠  to approximate the utility for 

that node/state. 

Needed properties of the evaluation function:
 Fast to compute.
 𝐸𝐸𝑚𝑚𝑎𝑎𝑅𝑅 𝑠𝑠 ∈ 𝑈𝑈𝐴𝐴𝐴𝐴𝑅𝑅𝐴𝐴𝐴𝐴𝑈𝑈 𝑅𝑅𝐴𝐴𝑠𝑠𝑠𝑠 ,𝑈𝑈𝐴𝐴𝐴𝐴𝑅𝑅𝐴𝐴𝐴𝐴𝑈𝑈 𝑤𝑤𝐴𝐴𝐴𝐴
 Correlated with the actual chance of winning (e.g., using features of the state).

Examples: 
1. A weighted linear function 

𝐸𝐸𝑚𝑚𝑎𝑎𝑅𝑅 𝑠𝑠 = 𝑤𝑤1𝑓𝑓1 𝑠𝑠 + 𝑤𝑤2𝑓𝑓2 𝑠𝑠 + ⋯+ 𝑤𝑤𝐴𝐴𝑓𝑓𝐴𝐴(𝑠𝑠)    

where 𝑓𝑓𝐴𝐴  is a feature of the state (e.g., # of pieces captured in chess).
2. A deep neural network trained on complete games.



Heuristic Alpha-Beta Tree Search:
Cutting off search

Eval Eval Eval Eval = heuristic to estimate of the minimax 
value/utility of the state.

Cu
t s

ea
rc

h 
of

f a
t d

ep
th

 =
2

HMV HMV HMV HMV HMV HMV HMV HMV HMV

HMV = heuristic minimax value

1

2

3

Depth (ply)
0 Pick the action with

 the highest HMV

This is also called: search 
with a “look ahead” of 2



Forward pruning

To save time, we can prune moves that appear bad. 

There are many ways move quality can be evaluated:

• Low heuristic value.
• Low evaluation value after shallow search (cut-off search).
• Past experience.

Issue: May prune important moves.



Heuristic Alpha-Beta Tree Search:
Example for Forward Pruning

Cu
t s

ea
rc

h 
of

f a
t d

ep
th

 =
2

xx x xxx

x … prune low HMV actions

Eval Eval Eval

HMV HMV HMV HMV HMV HMV HMV HMV HMV

Perform complete alpha-
beta search on these.

1. Perform Cut-off search.
2. Choose the n  best actions 

using the heuristic minimax 
value and prune the rest.

3. Explore the chosen actions 
using regular Alpha-Beta 
Tree search with move 
ordering.



Monte Carlo Tree 
Search (MCTS)



Methods 
for 
Adversarial 
Games

Exact Methods

• Model as nondeterministic actions: The 
opponent is seen as part of an environment with 
nondeterministic actions. Non-determinism is the 
result of the unknown moves by the opponent. 
We consider all possible moves by the opponent.

• Find optimal decisions: Minimax search and 
Alpha-Beta pruning where each player plays 
optimally to the end of the game.

Heuristic Methods 
(game tree is too large or search takes too long)

• Heuristic Alpha-Beta Tree Search: 
a. Cut off game tree and use heuristic for 

utility. 
b. Forward Pruning: ignore poor moves.

• Monte Carlo Tree search: Estimate utility of a 
state by simulating complete games and average 
the utility.



Idea

• Approximate 𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 𝒔𝒔  as the average utility of several simulation 
runs to the terminal state (called playouts).

• Playout policy: How to choose moves during the simulation runs? 
Example playout policies: 

• Random.
• Heuristics for good moves developed by experts.
• Learn good moves from self-play (e.g., with deep neural networks). We 

will talk about this when we talk about “Learning from Examples.”

• Typically used for problems with
• High branching factor (many possible moves make the tree very wide).
• Unknown or hard to define good evaluation functions.



Pure Monte Carlo Search

Find the next best move.

• Method
1. Simulate 𝑁𝑁 playouts from the current state.
2. Select the move that results in the highest win percentage.

• Optimality Guarantee: Converges to optimal play for 
stochastic games as 𝑁𝑁 increases. 

• Typical strategy for 𝑁𝑁 : Do as many playouts as you can 
given the available time budget for the move. 



Playout Selection Strategy

Issue: Pure Monte Carlo Search spends a lot of time to create playouts for bad 
move.
Better: Select the starting state for playouts to focus on important parts of the 
game tree (i.e., good moves).
This presents the following tradeoff:

Exploration: perform more playouts from 
states that currently have no or few 

playouts.

Exploitation: more playouts for states that have 
done well to get more accurate estimates.

Max can start a 
playout at any of 

these states. Which 
one should it choose?



Selection using Upper Confidence 
Bounds (UCB1)

𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝐴𝐴 = 𝑈𝑈 𝐴𝐴
𝑁𝑁 𝐴𝐴

+ 𝑈𝑈 log 𝑁𝑁(𝑃𝑃𝑎𝑎𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴 𝐴𝐴 )
𝑁𝑁(𝐴𝐴)

 

𝐴𝐴         … node in the game tree
𝑈𝑈 𝐴𝐴   … total utility of all playouts going through node n
𝑁𝑁 𝐴𝐴   … number of playouts through n

Average utility
(=exploitation)

Tradeoff constant ≈ 2
can be optimizes using experiments

High for nodes with few playouts relative to the 
parent node (=exploration). Goes to 0 for large 𝑁𝑁(𝐴𝐴)

Selection strategy: Select node with highest UCB1 score. 



Monte Carlo Tree Search (MCTS)

Pure Monte Carlo search always start playouts from a given 
state.
Monte Carlo Tree Search builds a partial game tree and can 
start playouts from any state (node) in that tree. 

Important considerations:
• We can use UCB1 as the selection strategy to decide what 

part of the tree we should focus on for the next playout. 
This balances exploration and exploitation.

• We typically can only store a small part of the game tree, so 
we do not store the complete playout runs.



Highest UCB1 score UCB1 selection favors win 
percentage more and more.

Note: the simulation 
path is not recorded to 

preserve memory!

Wins/Playouts
White

White

White

Black

Black

Select leaf with 
highest UCB1 score

(update counts)



Online Play Using MCTS 
• Search and update a partial tree to use up the time budget for the 

move.
• Keep the relevant subtree from move to move and expand from 

there.

Wins/Playouts
White

White

White

Black

Black

Do highest 
playout move

Keep subtree and 
explore/exploit.

After 
move



Stochastic Games
Games With Random Events



Stochastic Games

• Game includes a “random action” 𝑒𝑒 (e.g., dice, dealt cards) 
• Add chance nodes that calculate the expected value.

Backgammon



Expectiminimax
• Game includes a “random action” 𝑒𝑒 (e.g., dice, dealt cards).
• For chance nodes we calculate the expected minimax value.

𝐸𝐸𝑀𝑀𝐸𝐸𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴𝑒𝑒𝐴𝐴𝐴𝐴𝐴𝐴𝑒𝑒𝑎𝑎𝑀𝑀 𝑠𝑠 =
 

𝑈𝑈𝐴𝐴𝐴𝐴𝑅𝑅𝐴𝐴𝐴𝐴𝑈𝑈 𝑠𝑠  if 𝐴𝐴𝑅𝑅𝑒𝑒𝑒𝑒𝐴𝐴𝐴𝐴𝑎𝑎𝑅𝑅(𝑠𝑠)
max

𝑎𝑎∈𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴
𝐸𝐸𝑀𝑀𝐸𝐸𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴𝑒𝑒𝐴𝐴𝐴𝐴𝐴𝐴𝑒𝑒𝑎𝑎𝑀𝑀 𝑅𝑅𝑅𝑅𝑠𝑠𝑅𝑅𝑅𝑅𝐴𝐴 𝑠𝑠,𝑎𝑎  if 𝑒𝑒𝐴𝐴𝑚𝑚𝑅𝑅 = 𝑀𝑀𝑎𝑎𝑀𝑀

min
𝑎𝑎∈𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴

𝐸𝐸𝑀𝑀𝐸𝐸𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴𝑒𝑒𝐴𝐴𝐴𝐴𝐴𝐴𝑒𝑒𝑎𝑎𝑀𝑀 𝑅𝑅𝑅𝑅𝑠𝑠𝑅𝑅𝑅𝑅𝐴𝐴 𝑠𝑠, 𝑎𝑎  if 𝑒𝑒𝐴𝐴𝑚𝑚𝑅𝑅 = 𝑀𝑀𝐴𝐴𝐴𝐴

�
𝑃𝑃
𝑃𝑃(𝑒𝑒)𝐸𝐸𝑀𝑀𝐸𝐸𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴𝑒𝑒𝐴𝐴𝐴𝐴𝐴𝐴𝑒𝑒𝑎𝑎𝑀𝑀 𝑅𝑅𝑅𝑅𝑠𝑠𝑅𝑅𝑅𝑅𝐴𝐴 𝑠𝑠, 𝑒𝑒  if 𝑒𝑒𝐴𝐴𝑚𝑚𝑅𝑅 = 𝑈𝑈𝐶𝑎𝑎𝐴𝐴𝐴𝐴𝑅𝑅

• Options:
• Use Minimax algorithm. Issue: Search tree size explodes if the number of 

“random actions” is large. Think of drawing cards for poker!
• Cut-off search and approximate Expectiminimax with an evaluation function.
• Perform Monte Carlo Tree Search. 



Conclusion

Nondeterministic actions: 
• The opponent is seen as part of an 

environment with nondeterministic 
actions. Non-determinism is the 
result of the unknown moves by the 
opponent. All possible moves are 
considered.

Optimal decisions: 
• Minimax search and Alpha-Beta 

pruning where each player plays 
optimal to the end of the game.

• Choice nodes and Expectiminimax for 
stochastic games.

Heuristic Alpha-Beta Tree Search: 
• Cut off game tree and use heuristic 

evaluation function for utility (based 
on state features). 

• Forward Pruning: ignore poor moves.
• Learn heuristic from data using MCTS 

Monte Carlo Tree search: 
• Simulate complete games and 

calculate proportion of wins.
• Use modified UCB1 scores to expand 

the partial game tree.
• Learn playout policy using self-play 

and deep learning.

Scale only for tiny problem
s!

State of the Art


	CS 5/7320 �Artificial Intelligence���Adversarial Search and Games�AIMA Chapter 5
	Contents
	Games
	Definition of a Game
	Example: Tic-tac-toe
	Games as Search Problems
	Tic-tac-toe: Partial Game Tree
	Methods for Adversarial Games
	Nondeterministic Actions
	Methods for Adversarial Games
	Recall: Nondeterministic Actions
	Recall: AND-OR DFS Search Algorithm
	Tic-tac-toe: AND-OR Search
	Optimal Decisions
	Methods for Adversarial Games
	Idea: Minimax Decision
	Minimax Search: Back-up Minimax Values
	MiniMax-Search Algorithm
	Exercise: Simple 2-Ply Game
	Issue: Game Tree Size
	Alpha-Beta Pruning
	Example: Alpha-Beta Search
	Alpha-Beta-Search Algorithm
	Exercise: Simple 2-Ply Game with Alpha-Beta Pruning
	Move Ordering for Alpha-Beta Search
	Exercise: Simple 2-Ply Game with Alpha-Beta Pruning and Move ordering
	Heuristic Alpha-Beta Tree Search
	Methods for Adversarial Games
	Cutting off search
	Heuristic Alpha-Beta Tree Search:�Cutting off search
	Forward pruning
	Heuristic Alpha-Beta Tree Search:�Example for Forward Pruning
	Monte Carlo Tree Search (MCTS)
	Methods for Adversarial Games
	Idea
	Pure Monte Carlo Search
	Playout Selection Strategy
	Selection using Upper Confidence Bounds (UCB1)
	Monte Carlo Tree Search (MCTS)
	Monte-Carlo-Tree-Search Algorithm
	Online Play Using MCTS 
	Stochastic Games
	Stochastic Games
	Expectiminimax
	Conclusion

