CS 5/7320 Artificial Intelligence

Constraint Satisfaction Problems AIMA Chapter 6

Slides by Michael Hahsler based on Slides by Svetlana Lazepnik with figures from the AIMA textbook

This work is licensed under a <u>Creative Commons</u> <u>Attribution-ShareAlike 4.0 International License</u>.

Online Material

Constraint Satisfaction Problems (CSPs)

Definition:

- State is defined by a factored state representation:
 - A set of variables X_i called fluents.
 - Each variable can have a value from domain D_i or be **unassigned** (partial solution).
- Constraints are a set of rules specifying allowable combinations of values for subsets of the variables.

E.g., $X_1 \neq X_7$ or $X_2 > X_9 + 3$

- Solution: a state that is a
 - a) Consistent assignment: satisfies all constraints.
 - b) Complete assignment: assigns value to each variable.

Comparison to Other Methods

	Generic Tree Search	Local Search	CSP	
State representation	Atomic states Variables are only used to create human readable labels or calculate heuristics.	Factored representation to find local moves.	Factored	
Assignment	Always complete	Always complete	Partial assignment during search	
Constraints	Constrains are implicit in the search problem (initial + goal state + transition funciton).	Constraints are represented by the objective function and may not be met.	Enforcement of explicit constraints .	

+ General-purpose solvers for CSP with more power than standard search algorithms exit.

Example: Map Coloring (Graph coloring)

- Variables representing state: WA, NT, Q, NSW, V, SA, T
- Variable Domains: {red, green, blue}
- **Constraints:** adjacent regions must have different colors e.g.,

WA ≠ NT ⇔ (WA, NT) in {(red, green), (red, blue), (green, red), (green, blue), (blue, red), (blue, green)}

\star

Example: Map Coloring

Solutions are complete and consistent assignments, e.g.,

Example: N-Queens

- **Variables:** X_{ij} for $i, j \in \{1, 2, ..., N\}$
- Domains: {0, 1} # Queen: no/yes

Constraints:

 $\Sigma_{i,j} X_{ij} = N$ $(X_{ij}, X_{ik}) \in \{(0, 0), (0, 1), (1, 0)\} \text{ # cannot be in same col.}$ $(X_{ij}, X_{kj}) \in \{(0, 0), (0, 1), (1, 0)\} \text{ # cannot be in same row.}$ $(X_{ij}, X_{i+k, j+k}) \in \{(0, 0), (0, 1), (1, 0)\} \text{ # cannot be diagonal}$ $(X_{ij}, X_{i+k, j-k}) \in \{(0, 0), (0, 1), (1, 0)\} \text{ # cannot be diagonal}$

for $i, j, k \in \{1, 2, ..., N\}$

N-Queens: Alternative Formulation

- Variables: Q_1, Q_2, \dots, Q_N
- **Domains:** {1, 2, ..., *N*} # row for each col.

- Constraints:
 - \forall *i*, *j* non-threatening (Q_i , Q_j)

Example: Q1 = 2, Q2 = 4, Q3 = 1, Q4 = 3

Example: Sudoku

- Variables: X_{ii}
- Domains: {1, 2, ..., 9}
- Constraints:

Alldiff(X_{ij} in the same *unit*) Alldiff(X_{ij} in the same *row*) Alldiff(X_{ij} in the same *column*)

					8			4
	8	4		1	6			
			5			1		
1		3	8			9		
6		8		X _{ij}		4		3
		2			9	5		1
		7			2			
			7	8		2	6	
2			3					

Some Popular Types of CSPs

Boolean Satisfiability Problem (SAT)
 Find variable assignments that makes a Boolean expression
 (often expressed in conjunctive normal form) evaluate as true.

 $(x_1 \lor \neg x_2) \land (\neg x_1 \lor x_2 \lor x_3) \land \neg x_1 = \text{True}$

• Integer Programming

Variables are restricted to integers. Find a feasible solution that satisfies all constraints. The traveling salesman problem can be expressed as an integer program.

Linear Programming

Variables are continuous and constraints are linear (in)equalities. Find a feasible solution using, e.g., the simplex algorithm.

NP-complete

\star

Real-world CSPs

• Assignment problems

e.g., who teaches what class for a fixed schedule. Teacher cannot be in two classes at the same time!

• Timetable problems

e.g., which class is offered when and where? No two classes in the same room at the same problem.

- Scheduling in transportation and production (e.g., order of production steps).
- Many problems can naturally also be formulated as CSPs.
- More examples of CSPs: <u>http://www.csplib.org/</u>

Formulation of a CSP as a Search Problem

State:

• Values assigned so far

Initial state:

The empty assignment { } (all variables are unassigned)

Successor function:

- Choose an unassigned variable and assign it a value that does not violate any constraints
- Fail if no legal assignment is found

Goal state:

• Any complete and consistent assignment.

Backtracking Search

- In CSP's, variable assignments are commutative For example, [WA = red then NT = green] is the same as [NT = green then WA = red]. → Order is not important
- We can build a search tree that assigns the value to one variable per level.
 - Tree depth *n* (number of variables)
 - Number of leaves: **d**ⁿ (d is the number of values per variable)
- Depth-first search for CSPs with single-variable assignments is called **backtracking search**.

Example: Backtracking Search (DFS)

Backtracking Search Algorithm

```
function RECURSIVE-BACKTRACKING(assignment, csp)

if assignment is complete then return assignment

var \leftarrow SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp], assignment, csp)

for each value in ORDER-DOMAIN-VALUES(var, assignment, csp)

if value is consistent with assignment given CONSTRAINTS[csp]

add {var = value} to assignment

result \leftarrow RECURSIVE-BACKTRACKING(assignment, csp)

if result \neq failure then return result

remove {var = value} from assignment

return failure
```

```
Call: Recursive-Backtracking({}, csp)
```

Improving backtracking efficiency:

- Which variable should be assigned next?
- In what order should its values be tried?
- Can we detect inevitable failure early?

Similar to move ordering in games.

Tree pruning (like in alpha-beta search)

Variable/Value Ordering

Which variable should be assigned next?

Most constrained variable:

- Keep track of remaining legal values for unassigned variables (using constraints).
- Choose the variable with the fewest legal values left.
- A.k.a. minimum remaining values (MRV) heuristic.

In which order should its values be tried?

- Choose the **least constraining value**:
 - The value that rules out the fewest values in the remaining variables.

Early Detection of Failure: Forward Checking Node Consistency

- Keep track of remaining legal values for unassigned variables
- Terminate search when any variable has no legal values (i.e., minimum remaining values = 0)

• NT and SA cannot both be blue! This violates the constraint.

Early Detection of Failure: Forward Checking Arc Consistency

- X is arc consistent wrt Y iff for every value of X there is some allowed value of Y.
- Make X arc consistent wrt Y by throwing out any values of X for which there is no allowed value of Y.

- 1. NWS cannot be blue because SA has to be blue.
- 2. V cannot be red because NSW has to be red.
- 3. SA cannot be blue because NT is blue.
- 4. Fail and backtrack
- Arc consistency detects failure earlier than node consistency
- There are more consistency checks (path consistency, Kconsistency)

Backtracking Search With Ordering and Early Failure Detection

function RECURSIVE-BACKTRACKING(assignment, csp) if assignment is complete then return assignment $var \leftarrow SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp], assignment, csp)$ for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) if value is consistent with assignment given CONSTRAINTS[csp] add {var = value} to assignment result \leftarrow RECURSIVE-BACKTRACKING(assignment, csp) if result \neq failure then return result remove {var = value} from assignment return failure

```
Call: Recursive-Backtracking({}, csp)
```

If (inference(csp, var, assignment) == failure)
 return failure
Check consistency here (called "inference") and backtrack if we know that the
branch will lead to failure.

Local Search for CSPs

CSP algorithms

- Allow incomplete states.
- States must satisfy all constraints.

Local Search works only with

- Only "complete" states (all variables are assigned)
- Allows states with unsatisfied constraints.

Local search can attempt to reduce unsatisfied constraints by the **min-conflicts** heuristic:

VS.

- 1. Select a variable that violates a constraint (produces a conflict).
- 2. Choose a new value that violates fewer constraints.
- 3. Repeat till all constraints are met (or a local optimum is reached).

Local search is often very effective heuristic for CSPs.

What You Should Know

- CSPs are a special type of search problem:
 - States are **factored** and defined by a set of variables and values assignments
 - The goal is defined by a set of constraints on the variables.
 - Incomplete assignments are used to create a complete assignments piece-by-piece.
 - The goal test is defined by
 - Consistency with constraints
 - Completeness of assignment
- Many problems can be formulated as a CSP and problems where the constraints are very restrictive on the solution space may be easier to solve as CSPs (e.g., scheduling problems and puzzles).
- Effective off-the-shelf solvers exist. They typically use:
 - **Depth-first search**: successor states are generated variable-by-variable by adding a consistent value assignment to single unassigned variables.
 - Local search can be used as an effective heuristic. It search the space of all complete assignments for consistent assignments = min-conflicts heuristic.