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Reality vs. Knowledge Representation

• Facts: Sentences we know to be true.
• Possible worlds: all worlds/models which are consistent with the 

facts we know (compare with belief state).
• Learning new facts reduces the number of possible worlds.
• Entailment: A new sentence logically follows from what we already 

know. 

Knowledge

Learning

Facts



Knowledge-Based Agents

• Knowledge base (KB) = set of facts. E.g., set of sentences in a formal 
language that are known to be true.

• Declarative approach to building an agent: Define what it needs to know in its 
KB.

• Separation between data (knowledge) and program (inference).
• Actions are based on knowledge (sentences + inferred sentences) + an 

objective function. E.g., the agent knows the effects of 5 possible actions 
and chooses the action with the largest utility.

Inference engine
Domain-independent algorithms that
find new sentences using entailment.

Domain-specific content
Knowledge 

base



Generic Knowledge-based Agent

Memorize percept at 
time t

Record action taken 
at time t

Ask for logical action 
given an objective

Learning from
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Different Languages to Represent Knowledge

Natural Language        word patterns representing 
        facts, objects, relations, …                 ???

+
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Logical Agents 

• Facts are logical sentences that are known to be true.
• Inference: Generate new sentences that are entailed by all known sentences.
• Implementation: Typically using Prolog 

• Declarative logic programing language.
• Runs queries over the program (= the knowledge base)

Issues:
• Inference is computationally very expensive.
• Logic cannot deal with uncertainty.
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LLMs - Large Language Models

Natural Language        word patterns representing 
        facts, objects, relations, …                 ???

+

• Store knowledge as parameters in a deep neural networks.



Using Natural Language for Knowledge Representation

• The user formulates a question about the real world as a natural language 
prompt (a sequence of tokens).

• The LLM generates text using a model representing its knowledge base.
• The text (hopefully) is useful in the real world. The objective function is not 

clear. Maybe it is implied in the prompt?

Prompts Text

Generates
KB

Useful?

Pretrained model knows words 
relationship, grammar, and facts 

stored as parameters in a network.



LLM as a Knowledge-Based Agents

Current text generators are:
• Pretrained decoder-only transformer models (e.g., GPT stands for 

Generative Pre-trained Transformer). The knowledge base is not updated 
during interactions.

• Tokens are created autoregressively. One token is generated at a time based 
on all the previous tokens using the transformer attention mechanism.

Text Generator Domain-independent algorithms

Domain-specific content (fine tuning)
pretrained

Knowledge base

Domain-independent content (pre-training)
+

Learned word relationships, 
grammar, facts.



LLM as a Generic Knowledge-based Agent

• A chatbot repeatedly calls the agent function till the agent function returns 
the ‘end’ token. 

Prompt + already 
generated tokens

Next token



Many Open Questions 
about LLMs
• Correlation is not causation: Can 

LLMs reason to solve problems?
• Generative stochasticity leads to 

hallucinations: LLM makes up facts.
• Autoregression is an exponentially 

diverging diffusion process.
• The training data contains biases, 

nonsense and harmful content.
• Security: LLM can reveal sensitive 

information it was trained on.
• Rights-laundering: Copyrighted or 

licensed material can be in the 
training data.

• Leaky data makes it hard to 
evaluate true reasoning 
performance.

Reading: [2307.04821] Amplifying 
Limitations, Harms and Risks of Large 
Language Models (arxiv.org)

https://arxiv.org/abs/2307.04821
https://arxiv.org/abs/2307.04821
https://arxiv.org/abs/2307.04821
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Probabilistic Reasoning

Natural Language        word patterns representing 
        facts, objects, relations, …                 ???

+

• Replaces true/false with a probability.
• This is the basis for

• Probabilistic reasoning under uncertainty
• Decision theory
• Machine Learning

We will talk about these topics a lot more



Conclusion

• The clear separation between 
knowledge and inference engine is 
very useful.

• Pure logic is often not flexible enough. 
The fullest realization of knowledge-
based agents using logic was in the 
field of expert systems or knowledge-
based systems in the 1970s and 1980s.

• Pretrained Large Language Models are 
an interesting new application of 
knowledge-based agents based on 
natural language.

• Next, we will talk about probability 
theory which is the standard language 
to reason under uncertainty and forms 
the basis of machine learning.



Appendix: Logic
Details on Propositional and First-Order Logic



Logic to Represent Knowledge

Logic is a formal system for representing and manipulating facts 
(i.e., knowledge) so that true conclusions may be drawn

Syntax: rules for constructing valid 
sentences

E.g., x + 2 ≥ y is a valid arithmetic 
sentence, ≥x2y + is not

Semantics: “meaning” of 
sentences, or relationship between 
logical sentences and the real 
world

Specifically, semantics defines truth 
of sentences

E.g., x + 2 ≥ y is true in a world where 
x = 5 
and y = 7



Propositional Logic



Propositional Logic: 
Syntax in Backus-Naur Form

Negation
Conjunction
Disjunction
Implication
Biconditional

= Symbols



Validity and Satisfiability

e.g.,  True, A ∨¬A, A ⇒ A, (A ∧ (A ⇒ B)) ⇒ B
are called tautologies and are useful to 
deduct new sentences.

A sentence is valid 
if it is true in all 
models/worlds

e.g.,  A∨B, C
useful to find new facts that satisfy all 
current possible worlds.

A sentence is 
satisfiable if it is 

true in some model

e.g., A∧¬A
A sentence is 

unsatisfiable if it is 
true in no models



Possible Worlds, Models and Truth Tables

A model specifies a “possible world” with the true/false 
status of each proposition symbol in the knowledge base

• E.g.,  P is true and  Q is true
• With two symbols, there are 22 = 4 possible worlds/models, and they can 

be enumerated exhaustively using:

A truth table specifies the truth value of a composite sentence for each 
possible assignments of truth values to its atoms. Each row is a model.

We have 3 possible worlds  for 𝑃𝑃 ⇒ 𝑄𝑄 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡



Propositional Logic: Semantics

Rules for evaluating truth with respect to a model:

• ¬P   is true         iff     P is false  
• P ∧ Q    is true     iff     P          is true    and    Q           is true
• P ∨ Q    is true     iff     P  is true    or       Q          is true
• P ⇒ Q is true     iff     P          is false   or       Q          is true

ModelSentence



Logical Equivalence

Two sentences are logically equivalent iff (read if, and only if) 
they are true in same models



Entailment

• Entailment means that a sentence follows from the 
premises contained in the knowledge base:

KB ╞ α
• The knowledge base KB entails sentence 𝛼𝛼 iff 𝛼𝛼 is 

true in all models where KB is true
• E.g., KB with x = 0  entails sentence  x * y = 0

• Tests for entailment
• KB ╞ α iff (KB ⇒ α) is valid
• KB ╞ α iff (KB ∧¬α) is unsatisfiable



Inference

• Logical inference: a procedure for generating 
sentences that follow from (ar entailed by) a 
knowledge base KB.

• An inference procedure is sound if it derives a 
sentence α iff KB╞ α. I.e, it only derives true 
sentences.

• An inference procedure is complete if it can derive 
all α  for which KB╞ α.



Inference

• How can we check whether a sentence α is entailed by KB?

• How about we enumerate all possible models of the KB (truth 
assignments of all its symbols), and check that α is true in every 
model in which KB is true?

• This is sound: All produced answer are correct.
• This is complete: It will produce all correct answers.
• Problem: if KB contains n symbols, the truth table will be of 

size 2n

• Better idea: use inference rules, or sound procedures to generate 
new sentences or conclusions  given the premises in the KB. 

• Look at the textbook for inference rules and resolution. 



Inference Rules

• Modus Ponens

This means: If the KB contains the sentences 𝛼𝛼 ⇒ 𝛽𝛽 and 𝛼𝛼 then 𝛽𝛽 is 
true.
• And-elimination

β
αβα ,⇒

α
βα ∧

premises

conclusion



Inference Rules

• And-introduction

• Or-introduction

βα
α
∨

βα
βα

∧
,



Inference Rules

• Double negative elimination

• Unit resolution

α
ββα ¬∨ ,

α
α¬¬



Resolution

• Example:
α: “The weather is dry”
β: “The weather is rainy”
γ: “I carry an umbrella”

γα
γββα

∨
∨¬∨ ,

γα
γββα

∨
⇒∨ ,

or



Resolution is Complete

• To prove KB╞ α, assume KB ∧ ¬ α and derive a contradiction
• Rewrite KB ∧ ¬ α as a conjunction of clauses, 

or disjunctions of literals 
• Conjunctive normal form (CNF)

• Keep applying resolution to clauses that contain complementary 
literals and adding resulting clauses 
to the list

• If there are no new clauses to be added, then KB does not entail α
• If two clauses resolve to form an empty clause, we have a contradiction 

and KB╞ α

γα
γββα

∨
∨¬∨ ,



Complexity of Inference

• Propositional inference is co-NP-complete
• Complement of the SAT problem: α ╞ β if and only if the sentence α ∧ ¬ β is 

unsatisfiable
• Every known inference algorithm has worst-case exponential run time 

complexity.

• Efficient inference is only possible for restricted cases 
• e.g., Horn clauses are disjunctions of literals with at most one positive literal.



Example: Wumpus World



Example: Wumpus World
Initial KB needs to contain rules like these for 
each square:
𝐵𝐵𝑡𝑡𝑡𝑡𝑡𝑡𝐵𝐵𝑡𝑡 1,1 ⟺ 𝑃𝑃𝑃𝑃𝑡𝑡 1,2 ∨ 𝑃𝑃𝑃𝑃𝑡𝑡 2,1
𝐵𝐵𝑡𝑡𝑡𝑡𝑡𝑡𝐵𝐵𝑡𝑡 1,2 ⟺ 𝑃𝑃𝑃𝑃𝑡𝑡 1,1 ∨ 𝑃𝑃𝑃𝑃𝑡𝑡 1,3  ∨ 𝑃𝑃𝑃𝑃𝑡𝑡 2,2
Stench 1,1 ⟺𝑊𝑊 1,2 ∨𝑊𝑊 2,1
…
Percepts at (1,1) are no breeze or stench. Add 
the following facts to the KB:
¬𝐵𝐵𝑡𝑡𝑡𝑡𝑡𝑡𝐵𝐵𝑡𝑡(1,1)
¬𝑆𝑆𝑡𝑡𝑡𝑡𝑆𝑆𝑆𝑆𝑆(1,1)
Inference will tell us that the following facts are 
entailed: 
¬𝑃𝑃𝑃𝑃𝑡𝑡(1,2), ¬𝑃𝑃𝑃𝑃𝑡𝑡(2,1), ¬𝑊𝑊(1,2), ¬𝑊𝑊 2,1
This means that (1,2) and (2,1) are safe.

We have to 
enumerate all 
possible scenarios 
in propositional 
logic! First-order 
logic can help.



Summary

• Logical agents apply inference to a knowledge base to derive 
new information and make decisions.

• Basic concepts of logic:
• syntax: formal structure of sentences
• semantics: truth of sentences in models
• entailment: necessary truth of one sentence given another
• inference: deriving sentences from other sentences
• soundness: derivations produce only entailed sentences
• completeness: derivations can produce all entailed sentences

• Resolution is complete for propositional logic.
• Algorithms use forward, backward chaining, are linear in 

time, and complete for special clauses (definite clauses).



Limitations of Propositional Logic

Suppose you want to say “All humans are mortal”
• In propositional logic, you would need ~6.7 billion statements of the 

form: 
  Michael_Is_Human and Michael_Is_Mortal,

  Sarah_Is_Human and Sarah_Is_Mortal, …

Suppose you want to say “Some people can run a marathon”
• You would need a disjunction of ~6.7 billion statements:

  Michael_Can_Run_A_Marathon or … or Sarah_Can_Run_A_Marathon



First-Order Logic

First-order Logic adds objects and relations to the facts of 
propositional logic.

This addresses the issues of propositional logic, which needs to store a 
fact for each instance of and object individually.



Syntax of FOL

Objects

Relations. Predicate 
is/returns True or False

Function returns an object



Universal Quantification

• ∀x P(x)

• Example: “Everyone at SMU is smart”
∀x At(x,SMU) ⇒ Smart(x)
Why not ∀x At(x,SMU) ∧ Smart(x)?

• Roughly speaking, equivalent to the conjunction of all 
possible instantiations of the variable:

[At(John, SMU) ⇒ Smart(John)] ∧ ...
[At(Richard, SMU) ⇒  Smart(Richard)] ∧ ...

• ∀x P(x) is true in a model m iff P(x) is true with x being each 
possible object in the model



Existential Quantification

• ∃x P(x)

• Example: “Someone at SMU is smart”
∃x At(x,SMU) ∧ Smart(x)
Why not ∃x At(x,SMU) ⇒ Smart(x)?

• Roughly speaking, equivalent to the disjunction of all 
possible instantiations:

[At(John,SMU) ∧ Smart(John)] ∨
[At(Richard,SMU) ∧ Smart(Richard)] ∨ … 

• ∃x P(x) is true in a model m iff P(x) is true with x being some 
possible object in the model



Properties of Quantifiers

• ∀x ∀y is the same as ∀y ∀x
• ∃x ∃y is the same as ∃y ∃x 
• ∃x ∀y is not the same as ∀y ∃x

∃x ∀y Loves(x,y) 
 “There is a person who loves everyone”
∀y ∃x Loves(x,y)
 “Everyone is loved by at least one person”

• Quantifier duality: each quantifier can be expressed using 
the other with the help of negation
∀x Likes(x,IceCream) ¬∃x ¬Likes(x,IceCream)
∃x Likes(x,Broccoli) ¬∀x ¬Likes(x,Broccoli)



Equality

• Term1 = Term2 is true under a given model if and 
only if Term1 and Term2 refer to the same object

• E.g., definition of Sibling in terms of Parent:
∀x,y Sibling(x,y) ⇔ 

[¬(x = y) ∧ ∃m,f ¬ (m = f) ∧ Parent(m,x) ∧ Parent(f,x) ∧ 
Parent(m,y) ∧  Parent(f,y)]



Example: The Kinship Domain

• Brothers are siblings
∀x,y Brother(x,y) ⇒ Sibling(x,y)

• “Sibling” is symmetric
∀x,y Sibling(x,y) ⇔ Sibling(y,x)

• One's mother is one's female parent
∀m,c (Mother(c) = m) ⇔ (Female(m) ∧ Parent(m,c))



Example: The Set Domain

• ∀s Set(s) ⇔ (s = {}) ∨ (∃x,s2 Set(s2) ∧ s = {x|s2})
• ¬∃x,s {x|s} = {}
• ∀x,s x ∈ s ⇔ s = {x|s}
• ∀x,s x ∈ s ⇔ [ ∃y,s2 (s = {y|s2} ∧ (x = y ∨ x ∈ s2))]
• ∀s1,s2 s1 ⊆ s2 ⇔ (∀x x ∈ s1 ⇒ x ∈ s2)
• ∀s1,s2 (s1 = s2) ⇔ (s1 ⊆ s2 ∧ s2 ⊆ s1)
• ∀x,s1,s2 x ∈ (s1 ∩ s2) ⇔ (x ∈ s1 ∧ x ∈ s2)
• ∀x,s1,s2 x ∈ (s1 ∪ s2) ⇔ (x ∈ s1 ∨ x ∈ s2)



Inference in FOL

Inference in FOL is complicated!

1. Reduction to propositional logic and then use propositional logic 
inference. 

2. Directly do inference on FOL (or a subset like definite clauses)
• Unification: Combine two sentences into one.
• Forward Chaining for FOL
• Backward Chaining for FOL
• Logical programming (e.g., Prolog)
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