
CS 5/7320
Artificial Intelligence

Automated Planning
AIMA Chapter 11

Slides by Michael Hahsler
with figures from the AIMA textbook

This work is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License. Online Material

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Contents

Classical Planning

Hierarchical Planning

Monitoring and Replaning

Classical Planning
Using Planning Domain Definition Languages

Classical Planning

• Find a sequence of actions to accomplish a goal in a discrete,
deterministic, static, fully observable environment.

• Options we have already discussed:
• Chapter 3 : Search with a custom heuristic evaluation function.
• Chapter 7: Propositional logic with custom code.

• Issue: Large state space.

• Solution: Factored state representation using a Planning Domain
Definition Language (PDDL) + Action schemas

Planning Domain Definition Language (PDDL)

• State: a conjunction of ground atomic fluents (in 1-conjunctive normal form; 1-
CNF).

• Action Schema (=precondition-effect description)

• Action 𝑎𝑎 is applicable to state 𝑠𝑠 if 𝑠𝑠 entails the precondition of 𝑎𝑎.
• The effect of 𝑎𝑎 on 𝑠𝑠 is to remove the negated fluents and adds the positive

fluents.
RESULT 𝑠𝑠, 𝑎𝑎 = 𝑠𝑠 − DEL 𝑎𝑎 ∪ ADD(𝑎𝑎))

• The goal is just like a precondition. E.g., 𝐴𝐴𝐴𝐴 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒1, 𝑆𝑆𝑆𝑆𝑆𝑆 ∧ 𝐴𝐴𝐴𝐴(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒2, 𝐽𝐽𝐽𝐽𝐽𝐽)

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐹𝐹𝐹𝐹𝐹𝐹(𝑝𝑝, 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, 𝑡𝑡𝑡𝑡)),
 PRECOND: 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑝𝑝 ∧ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ∧
 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑡𝑡𝑡𝑡 ∧ 𝐴𝐴𝐴𝐴 𝑝𝑝, 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
 EFFECT: ¬ 𝐴𝐴𝐴𝐴 𝑝𝑝, 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ∧ 𝐴𝐴𝐴𝐴(𝑝𝑝, 𝑡𝑡𝑡𝑡)

DEL() ADD()

an aspect of the world that
can change over time

Example: Block World

Algorithms
• Forward state-space search: Needs heuristics* to deal with the state space.
• Backward search (= regression search): keeps the branching factor low.

Issue: How do we define heuristics?
• Convert the PDDL description into propositional form and use an efficient

solvers for the Boolean satisfiability problem (SAT).

Example: maze
State: 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑥𝑥 ∧ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑦𝑦

Ignore-precondition that
checks for walls

*Heuristics for Planning
Use the factored state description to calculate a heuristic
function ℎ(𝑠𝑠) that estimates the distance from 𝑠𝑠 to the
goal. If it is admissible (does not overestimate the
distance) then A* can be used.

Example relaxations to create a heuristic:
• Ignore-preconditions: any action can be used in any

state
• Ignore delete-list: no negative effects, problem

progresses monotonic towards the goal.
• Serializable subgoals: subgoals can be achieved

without undoing a previous subgoal.
• State abstraction to reduce the number of states. E.g.,

ignore some fluents.

Hierarchical Planning
Manage complexity using high-level actions.

High-level Actions

• A high-level action (HLA) have one or several refinements into a
sequence of HLAs or primitive actions.

• An HLA achieves the goal if at least one implementation achieves the
goal.

HLA

HLA HLA HLA HLA HLA …

…𝑎𝑎 𝑎𝑎 𝑎𝑎 𝑎𝑎 𝑎𝑎 “Implementation” with only primitive actions

Re
fin

em
en

t

Example: Refinement

• Two refinements for the HLA 𝐺𝐺𝐺𝐺(𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻, 𝑆𝑆𝑆𝑆𝑆𝑆) to go from home to
the SFO airport:

• The agent can choose which implementation of the HLA to use.

Search for Primitive Solutions

• The top HLA is often just “Act” and the agent needs to find an implementation
that achieves the goal.

• Classical Planning
• For each primitive action, provide a refinement of 𝐴𝐴𝐴𝐴𝐴𝐴 with steps [𝑎𝑎𝑖𝑖 ,𝐴𝐴𝐴𝐴𝐴𝐴].
• This can recursively build any sequence of actions.
• To stop the recursion, define:

• Issue: This approach has to search through all possible sequences!
• Improvement:

• Reduce the number of needed refinements + increase the number of steps in each
refinement.

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝐴𝐴𝐴𝐴𝐴𝐴),
 PRECOND: goal is reached
 STEPS: []

Search for Primitive Solutions -
Implementation

Searching for Abstract Solutions

• Search for primitive solutions has to refine all HLAs all the way to primitive
actions to determine if a plan is workable.

• Idea: Determine what HLAs do.
• Write precondition-effect descriptions for HLAs (this is difficult because of neg. effects!)
• This results in an exponential reduction of the search space.

• Reachable set: the set of states reachable with a sequence of HLAs [ℎ1, ℎ2] in
state 𝑠𝑠.

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑠𝑠, ℎ1, ℎ2 = �
𝑠𝑠′=𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑠𝑠,ℎ1)

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑠𝑠′, ℎ2

• A sequence of HLAs achieves the goal if its reachable set intersects the goal set.
• Typical implementation:

1. Use a simplified (optimistic) version of precondition-effect descriptions to find a high-
level plan that works.

2. Check if a refinement of that plan that works really exists. If not, go back to 1.

Monitoring and
Replanning
Planning and Acting in Partially Observable, Nondeterministic, and
Unknown Environments

Determinism & Observability -
Belief States

• For nondeterministic or partially observable environments we need belief
states.

• A belief state is a set of possible physical states the agent might be in given
its current knowledge.

• The belief state concept needs to be extended to the factored state
representation.

• A belief state becomes a logical formula of fluents.
• Fluents that do not appear in the formula are unknow.

Technical note: If we manage to keep the belief state in 1-CNF (1-conjunctive normal
form, i.e., fluents are combined with ANDs), then the complexity is reduced from being
exponential in the number of fluents to linear!

Observability -
Percept Schema

• For partially observable environments we need to be able to define what
percepts the agent can get when.

• The agent uses a percept schema to reason about percepts that it can
obtains during executing a plan.

• Example: Whenever the agent sees an object, then it will perceive its color.

The agent can now reason that it needs to get an object inView to see the
color.

• Percept schemata and observability
• Fully observable: Percept schemas have no preconditions.
• Partially observable: Some percepts have preconditions.
• Sensorless agent: has no percept schemas.

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥, 𝑐𝑐)),
 PRECOND: 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑥𝑥 ∧ 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥)

Observability -
Sensorless Planning (Conformant planning)

• We assume the underlying planning problem is deterministic.

• Similar to sensorless search in Chapter 4. Differences:
• Transition model is a set of action schemata.
• Belief state is represented as a logical formula where unknown fluents are

missing.

• Update:

b′ = RESULT 𝑏𝑏,𝑎𝑎 = {𝑠𝑠′: 𝑠𝑠′ = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑇𝑇𝑃𝑃 𝑠𝑠,𝑎𝑎 and 𝑠𝑠 ∈ 𝑏𝑏}

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_𝑃𝑃 represents the physical transition model which adds positive and negative
literals to the state description. The state description becomes more and more complete.

Determinism & Observability -
Contingency Planning

• We can create a conditional plan for partially observable planning
problems and non-deterministic problems.

• We already have introduced conditional plans in Chapter 4 and just
need to augment it by:

• Action schemata instead of a transition function.
• Percept schemata to reason about how to get needed percepts.
• The state has a factored representation as facts in 1-CNF.

• Use AND-OR search over belief states.

• Issues:
• Contingency plans become very complicated with non-deterministic effects

like failures in actions or percepts. E.g., moving north fails 1 out of 100 times.
• Plan fails with incorrect model of the world. E.g., actions with missing

preconditions or missing effects, missing fluents, exogenous effects.

→ Online Planning

Execution Monitoring and Replanning

• Online planning = replan during execution when necessary.
• Requires execution monitoring to determine the need for

replanning. The agent can perform:
• Action monitoring: Only execute action if the preconditions are met.
• Plan monitoring: Verify that the remaining plan will still succeed.
• Goal monitoring: Check if a better set of goals has become available.

• Contingency plans can often be made simpler by having unlikely
branches just say “REPLAN.”

• Process:

Plan Execute Check Replan Execute … Goal

Example: Plan Monitoring with Repair

1. Initial plan

2. Failure detected:
Should be in E.

Remaining plan will
not work.

+ Replan3. Repair

Actual
path taken

Summary

• Action schemata make
specifying the transition function
easier.

• Hierarchical planning lets us
deal with the exponential size of
the state space. The agent can
reason at a more abstract level
of high-level actions and the
states are typically discrete.

• Online planning with
monitoring and replanning is

• very flexible
• can deal with many types of issues

(sensor/actuator failure, imperfect
models of the environment)

• Can make conditional plans smaller
by omitting unlikely paths and
leaving them for later replanning.

	CS 5/7320 �Artificial Intelligence����Automated Planning�AIMA Chapter 11
	Contents
	Classical Planning
	Classical Planning
	Planning Domain Definition Language (PDDL)
	Example: Block World
	Algorithms
	Hierarchical Planning
	High-level Actions
	Example: Refinement
	Search for Primitive Solutions
	Search for Primitive Solutions - Implementation
	Searching for Abstract Solutions
	Monitoring and Replanning
	Determinism & Observability - �Belief States
	Observability -�Percept Schema
	Observability -�Sensorless Planning (Conformant planning)
	Determinism & Observability -�Contingency Planning
	Execution Monitoring and Replanning
	Example: Plan Monitoring with Repair
	Summary

