CS 5/7320

Artificial Intelligence

Automated Planning
AIMA Chapter 11

Slides by Michael Hahsler
with figures from the AIMA textbook

This work is licensed under a Creative Commons
e Attribution-ShareAlike 4.0 International License.

Online Material

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Contents

mm Classical Planning

mm Hierarchical Planning

mm Vonitoring and Replaning

‘

Classical Planning

Using Planning Domain Definition Languages

Classical Planning

* Find a sequence of actions to accomplish a goal in a discrete,
deterministic, static, fully observable environment.

* Options we have already discussed:
* Chapter 3 : Search with a custom heuristic evaluation function.
* Chapter 7: Propositional logic with custom code.

* |ssue: Large state space.

* Solution: Factored state representation using a Planning Domain
Definition Language (PDDL) + Action schemas

Planning Domain Definition Language (PDDL)

an aspect of the world that
can change over time

. gtat;e: a conjunction of ground atomic fluents (in 1-conjunctive normal form; 1-
NF).

* Action Schema (=precondition-effect description)

Action(Fly(p, from,to)),
PRECOND: Plane(p) A Airport(from) A
Airport(to) A At(p, from)
EFFECT: = At(p, from) A At(p, to)

\)\ J

DEL() ADD()

* Action a is applicable to state s if s entails the precondition of a.

. ahe effect of a on s is to remove the negated fluents and adds the positive
uents.

RESULT(s,a) = (s — DEL(a)) U ADD(a))

* The goal is just like a precondition. E.g., At(Plane,, SFO) A At(Plane,, JFK)

Example: Block World

B||A
I

Start State Goal State

Init(On(A, Table) A On(B, Table) A On(C, A)

N Block(A) N Block(B) N Block(C) A Clear(B) A Clear(C) N Clear(Table))
Goal(On(A,B) A On(B,C))
Action(Move(b, x,y),

PRECOND: On(b,z) A Clear(b) A Clear(y) N Block(b) N Block(y) A

(b#z) A (b#y) A (z#y),

EFFECT: On(b,y) A Clear(x) A =On(b,z) N —Clear(y))
Action(MoveToTable (b, x),

PRECOND: On(b,x) A Clear(b) N Block(b) N Block(x),

EFFECT: On(b, Table) A Clear(x) A =On(b,z))

Figure 11.4 A planning problem in the blocks world: building a three-block tower. One
solution is the sequence [MoveToTable(C, A), Move(B, Table, C'), Move(A, Table, B)).

Algorithms

* Forward state-space search: Needs heuristics* to deal with the state space.

* Backward search (= regression search): keeps the branching factor low.

Issue: How do we define heuristics?

* Convert the PDDL description into propositional form and use an efficient

solvers for the Boolean satisfiability problem (SAT).

*Heuristics for Planning
Use the factored state description to calculate a heuristic
function h(s) that estimates the distance from s to the
goal. If it is admissible (does not overestimate the
distance) then A* can be used.
Example relaxations to create a heuristic:
Ignore-preconditions: any action can be used in any

state

lgnore delete-list: no negative effects, problem
progresses monotonic towards the goal.

Serializable subgoals: subgoals can be achieved
without undoing a previous subgoal.

State abstraction to reduce the number of states. E.g.,
ignore some fluents.

Example: maze
State: PosX(x) A PosY(y)

lgnore-precondition that
checks for walls

Hierarchical Plannin;

UQ

Manage complexity using high-level actions.

High-level Actions

A high-level action (HLA) have one or several refinements into a
sequence of HLAs or primitive actions.

m a a a XX “Implementation” with only primitive actions

* An HLA achieves the goal if at least one implementation achieves the
goal.

Refinement

Example: Refinement

* Two refinements for the HLA Go(Home, SFO) to go from home to
the SFO airport:

Refinement(Go(Home, SFO),
STEPS: [Drive(Home, SFOLongTermParking),
Shuttle(SFOLongTermParking, SFO)])
Refinement(Go(Home, SFO),
STEPS: [Taxi(Home, SFO)])

* The agent can choose which implementation of the HLA to use.

Search for Primitive Solutions

* The top HLA is often just “Act” and the agent needs to find an implementation
that achieves the goal.

* Classical Planning
* For each primitive action, provide a refinement of Act with steps [a;, Act].
* This can recursively build any sequence of actions.
* To stop the recursion, define:

Refinement(Act),
PRECOND: goal is reached
STEPS: []

* Issue: This approach has to search through all possible sequences!

* Improvement:

* Reduce the number of needed refinements + increase the number of steps in each
refinement.

Search for Primitive Solutions -
Implementation

function HIERARCHICAL-SEARCH(problem, hierarchy) returns a solution or failure

frontier < a FIFO queue with [Acr] as the only element
while true do
if [S-EMPTY(frontier) then return failure
plan <— POP(frontier) / / chooses the shallowest plan in frontier
hla < the first HLA in plan, or null if none
prefiz, suffir + the action subsequences before and after hla in plan
outcome <— RESULT(problem.INITIAL, prefix)
if hla 1s null then // so plan is primitive and outcome is its result
if problem.IS-GOAL(outcome) then return plan
else for each sequence in REFINEMENTS(hla, outcome, hierarchy) do
add APPEND(prefix, sequence, suffix) to frontier

Figure 11.8 A breadth-first implementation of hierarchical forward planning search. The
initial plan supplied to the algorithm is [Acz]. The REFINEMENTS function returns a set of
action sequences, one for each refinement of the HLA whose preconditions are satisfied by
the specified state, outcome.

Searching for Abstract Solutions

» Search for primitive solutions has to refine all HLAs all the way to primitive
actions to determine if a plan is workable.

* Idea: Determine what HLAs do.
* Write precondition-effect descriptions for HLAs (this is difficult because of neg. effects!)
* This results in an exponential reduction of the search space.

* Reachable set: the set of states reachable with a sequence of HLAs [hq, h;] in
state s.

REACH(s, [hy, hy]) = U REACH(s', hy)

s'=REACH(s,hq)
* A sequence of HLAs achieves the goal if its reachable set intersects the goal set.

e Typical implementation:

1. Use a simplified (Oﬁtimistic) version of precondition-effect descriptions to find a high-
level plan that works.

2. Check if a refinement of that plan that works really exists. If not, go back to 1.

-

Monitoring ana

—

Replanning

Planning and Acting in Partially Observable, Nondeterministic, and
Unknown Environments

Determinism & Observability -
Belief States

* For nondeterministic or partially observable environments we need belief
states.

* A belief state is a set of possible physical states the agent might be in given
its current knowledge.

* The belief state concept needs to be extended to the factored state
representation.
* A belief state becomes a logical formula of fluents.
* Fluents that do not appear in the formula are unknow.

Technical note: If we manage to keep the belief state in 1-CNF (1-conjunctive normal
form, i.e., fluents are combined with ANDs), then the complexity is reduced from being
exponential in the number of fluents to linear!

Observability -
Percept Schema

* For partially observable environments we need to be able to define what
percepts the agent can get when.

* The agent uses a percept schema to reason about percepts that it can
obtains during executing a plan.

* Example: Whenever the agent sees an object, then it will perceive its color.

Percept(Color(x, c)),
PRECOND: Object(x) A inView(x)

The agent can now reason that it needs to get an object inView to see the
color.

* Percept schemata and observability
* Fully observable: Percept schemas have no preconditions.
 Partially observable: Some percepts have preconditions.
» Sensorless agent: has no percept schemas.

Observability -
Sensorless Planning (Conformant planning)

* We assume the underlying planning problem is deterministic.

 Similar to sensorless search in Chapter 4. Differences:

* Transition model is a set of action schemata.
 Belief state is represented as a logical formula where unknown fluents are

missing.
* Update:

b’ = RESULT(b,a) = {s’:s’ = RESULTp(s,a) and s € b}

RESULT _P represents the physical transition model which adds positive and negative
literals to the state description. The state description becomes more and more complete.

Determinism & Observability -
Contingency Planning

* We can create a conditional plan for partially observable planning
problems and non-deterministic problems.

* We already have introduced conditional plans in Chapter 4 and just
need to augment it by:
* Action schemata instead of a transition function.
 Percept schemata to reason about how to get needed percepts.
* The state has a factored representation as facts in 1-CNF.

e Use AND-OR search over belief states.

* |[ssues:

* Contingency plans become very complicated with non-deterministic effects
like failures in actions or percepts. E.g., moving north fails 1 out of 100 times.

 Plan fails with incorrect model of the world. E.g., actions with missing
preconditions or missing effects, missing fluents, exogenous effects.

— Online Planning

Execution Monitoring and Replanning

* Online planning = replan during execution when necessary.

* Requires execution monitoring to determine the need for
replanning. The agent can perform:
e Action monitoring: Only execute action if the preconditions are met.
* Plan monitoring: Verify that the remaining plan will still succeed.
* Goal monitoring: Check if a better set of goals has become available.

* Contingency plans can often be made simpler by having unlikely
branches just say “REPLAN.”

* Process:

DI IDIDIEDED XD

Example: Plan Monitoring with Repair

1. Initial plan

Actual
path taken

\ continuation

pair .

}

n

=
T

2. Failure detected:
Should be in E.

Remaining plan will
not work.

el ————— ——— — —

Figure 11.12 At first, the sequence “whole plan” is expected to get the agent from S to G.
The agent executes steps of the plan until it expects to be in state F, but observes that it is
actually in O. The agent then replans for the minimal repair plus continuation to reach G.

Summary

e Action schemata make
specifying the transition function
easier.

 Hierarchical planning lets us
deal with the exponential size of
the state space. The agent can
reason at a more abstract level
of high-level actions and the
states are typically discrete.

* Online planning with
monitoring and replanning is
* very flexible

* can deal with many types of issues
(sensor/actuator failure, imperfect
models of the environment)

* Can make conditional plans smaller
by omitting unlikely paths and
leaving them for later replanning.

	CS 5/7320 �Artificial Intelligence����Automated Planning�AIMA Chapter 11
	Contents
	Classical Planning
	Classical Planning
	Planning Domain Definition Language (PDDL)
	Example: Block World
	Algorithms
	Hierarchical Planning
	High-level Actions
	Example: Refinement
	Search for Primitive Solutions
	Search for Primitive Solutions - Implementation
	Searching for Abstract Solutions
	Monitoring and Replanning
	Determinism & Observability - �Belief States
	Observability -�Percept Schema
	Observability -�Sensorless Planning (Conformant planning)
	Determinism & Observability -�Contingency Planning
	Execution Monitoring and Replanning
	Example: Plan Monitoring with Repair
	Summary

