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Example: Catching a Flight with a Logical Agent

Let action At = leave for airport t minutes before flight
Question: Will At get me there on time?

Problems:
• Partial observability (road state, other drivers' plans, etc.)
• Noisy sensors (traffic reports)
• Uncertainty in action outcomes (flat tire, etc.)
• Complexity of modeling and predicting traffic

Logical leads to the following conclusions:
• A25 will get me there on time if there is no accident on the bridge and it doesn't 

rain and my tires remain intact, etc., etc.
• AInf guarantees to get there in time, but who lives forever?

Logic creates conclusions that are too weak for effective decision making!
Uncertainty is really bad for logical agents!



Example: Catching a Flight
Making a Decision Under Uncertainty
Probabilities: Suppose the agent believes the following:

  𝑃𝑃(𝐴𝐴25 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑚𝑚𝑚𝑚 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)  =  0.04 
 𝑃𝑃(𝐴𝐴90 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑚𝑚𝑚𝑚 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)  =  0.80 
 𝑃𝑃(𝐴𝐴120 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑚𝑚𝑚𝑚 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)  =  0.99
 𝑃𝑃(𝐴𝐴1440 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑚𝑚𝑚𝑚 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)  =  0.9999 

Which action should the agent choose?
• Depends also on preferences for missing flight vs. time spent waiting.
• Utility theory represents preferences for actions using a 

utility function 𝑈𝑈(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) .

Decision Theory = Probability Theory + Utility Theory 

The agent should choose the action that maximizes the expected utility.

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑥𝑥𝐴𝐴𝑡𝑡  [ 𝑃𝑃(𝐴𝐴𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) 𝑈𝑈(𝐴𝐴𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) +  𝑃𝑃(𝐴𝐴𝑡𝑡 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) 𝑈𝑈(𝐴𝐴𝑡𝑡 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) ]



Sources of Uncertainty

Probabilistic assertions summarize effects of:

• Intrinsically random behaviorRandomness

• Lack of explicit theories, 
relevant facts, observability, 
etc.

Ignorance

• Failure to enumerate 
exceptions, 
qualifications, etc.

Laziness

Example: What is the source of uncertainty for a coin toss?



What are Probabilities?

Probabilities are long-run relative frequencies determined by 
observation.

• For example, if we toss a coin many times,𝑃𝑃(ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) is estimated as 
the proportion of the time the coin will come up heads

• But what if we are dealing with events that only happen once? E.g., 
what is the probability that a Republican will win the presidency in 
2024? How do we define comparable elections? Reference class 
problem. 

Frequentism (Objective; Positivist)

Probabilities are degrees of belief based on prior knowledge and 
updated by evidence.

Provides tools to:
• Assign belief values to statements without evidence
• Update our degrees of belief given observations = Learning

Bayesian Statistics (Subjective)
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Probability Theory Recap
 Notation: Prob. of an event 𝑃𝑃 𝑋𝑋 = 𝑥𝑥 = 𝑃𝑃(𝑥𝑥)

                  Prob. distribution 𝑷𝑷 𝑋𝑋 = 𝑃𝑃 𝑋𝑋 = 𝑥𝑥1 ,𝑃𝑃 𝑋𝑋 = 𝑥𝑥2 , … ,𝑃𝑃 𝑋𝑋 = 𝑥𝑥𝑛𝑛

 Product rule   𝑃𝑃 𝑥𝑥,𝑦𝑦 = 𝑃𝑃 𝑥𝑥 𝑦𝑦 𝑃𝑃(𝑦𝑦)
 Chain rule   𝑷𝑷 X1, X2, … , Xn = 𝐏𝐏 X1 𝐏𝐏 X2 X1 𝐏𝐏 X3 X1, X2 …

                  = ∏𝑖𝑖=1
𝑛𝑛 𝑷𝑷(𝑋𝑋_𝑖𝑖|𝑋𝑋1, … ,𝑋𝑋𝑖𝑖−1) 

 Conditional probability  𝑃𝑃 𝑥𝑥 𝑦𝑦 = 𝑃𝑃(𝑥𝑥,𝑦𝑦)
𝑃𝑃(𝑦𝑦)

= 𝛼𝛼𝛼𝛼(𝑥𝑥,𝑦𝑦)

 Independence
  𝑋𝑋 ⫫ 𝑌𝑌: 𝑋𝑋,𝑌𝑌 are independent (written as  𝑋𝑋 ⫫ 𝑌𝑌) if and only if: 

∀𝑥𝑥,𝑦𝑦:𝑃𝑃 𝑥𝑥,𝑦𝑦 = 𝑃𝑃 𝑥𝑥 𝑃𝑃(𝑦𝑦)

 𝑋𝑋 ⫫ 𝑌𝑌|𝑍𝑍: 𝑋𝑋 and 𝑌𝑌 are conditionally independent given 𝑍𝑍 if and only if:
∀𝑥𝑥,𝑦𝑦, 𝑧𝑧:𝑃𝑃 𝑥𝑥,𝑦𝑦 𝑧𝑧 = 𝑃𝑃 𝑥𝑥 𝑧𝑧 𝑃𝑃(𝑦𝑦|𝑧𝑧)



Bayesian Update: Bayes’ Rule

The product rule gives us two ways to factor a joint distribution 
for events x and e:

𝑃𝑃 𝑥𝑥, 𝑒𝑒 = 𝑃𝑃 𝑥𝑥 𝑒𝑒 𝑃𝑃 𝑒𝑒 = 𝑃𝑃 𝑒𝑒 𝑥𝑥 𝑃𝑃(𝑥𝑥)

Therefore, 𝑃𝑃 𝑥𝑥 𝑒𝑒) = 𝑃𝑃(𝑒𝑒|𝑥𝑥)𝑃𝑃(𝑥𝑥)
𝑃𝑃(𝑒𝑒)

Why is this useful?
• We can update our beliefs about an event 𝑋𝑋 = 𝑥𝑥 based on 

new evidence (𝐸𝐸 = 𝑒𝑒).
• We can get diagnostic probability 
𝑃𝑃(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 | 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) from causal probability 
𝑃𝑃(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 | 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶)

Written as distributions         𝑷𝑷 𝑋𝑋 𝐸𝐸) = 𝑷𝑷(𝐸𝐸|𝑋𝑋)𝑷𝑷(𝑋𝑋)
𝑷𝑷(𝐸𝐸)

Rev. Thomas Bayes
(1702-1761)

Prior Prob.Posterior Prob.



Example: Getting Married in the Desert

Marie is getting married tomorrow, at an outdoor ceremony in the desert. 
In recent years, it has rained only 5 days each year (5/365 = 0.014). 
Unfortunately, the weatherman has predicted rain for tomorrow. When it 
actually rains, the weatherman correctly forecasts rain 90% of the time. 
When it doesn't rain, he incorrectly forecasts rain 10% of the time. What is 
Marie’s belief for the probability that it will rain on her wedding day? 

𝑃𝑃(Rain|Predict) =
𝑃𝑃(Predict|Rain)𝑃𝑃(Rain)

𝑃𝑃(Predict)

=
𝑃𝑃(Predict|Rain)𝑃𝑃(Rain)

𝑃𝑃(Predict|Rain)𝑃𝑃(Rain) + 𝑃𝑃(Predict|¬Rain)𝑃𝑃(¬Rain)

=
0.9 ∗ 0.014

0.9 ∗ 0.014 + 0.1 ∗ 0.986
= 0.111

The weather forecast changes her 
belief from 0.014 to 0.111. She thinks 
now that the chance of rain tomorrow 
is now about 10-times larger!

Prior Probability 
of rain 𝑃𝑃(𝑥𝑥)

New 
Evidence 𝑒𝑒 

Posterior Probability 
𝑃𝑃 𝑥𝑥 𝑒𝑒)?

𝑃𝑃 𝑥𝑥 𝑒𝑒) =
𝑃𝑃 𝑒𝑒 𝑥𝑥  𝑃𝑃(𝑥𝑥)

𝑃𝑃(𝑒𝑒)



Issue With Applying Bayes’ Theorem

Issue: The joint probability table is typically way too large! 
• For 𝑛𝑛 random variables with a domain size of 𝑑𝑑 each, we have a table of size 
𝑂𝑂(𝑑𝑑𝑛𝑛). This is a problem for 

• storing the table, and
• estimating the probabilities from data (we need lots of data).

Solution: 
• Decomposition of joint probability distributions using independence and 

conditional independence between events.  
• A large table can be broken into several much smaller tables.  

Estimate Joint 
Probability 
Distribution

Calculate Marginal 
and Conditional 

Probabilities

Apply Bayes’ 
Theorem

Approach



Independence Between Events
• Two events A and B are independent (A ⫫ 𝐵𝐵) if and only if  

𝑷𝑷(𝐴𝐴,𝐵𝐵)  =  𝑷𝑷(𝐴𝐴) 𝑷𝑷(𝐵𝐵)

• This is equivalent to 𝑷𝑷(𝐴𝐴 | 𝐵𝐵)  =  𝑷𝑷(𝐴𝐴) and 𝑷𝑷(𝐵𝐵 | 𝐴𝐴)  =  𝑷𝑷(𝐵𝐵)
• Independence is an important simplifying assumption for modeling, e.g., 

Cavity and Weather can be assumed to be independent

Independence P(Cavity, Weather) = P(Cavity)P(Weather) 
P(Cavity | Weather) = P(Cavity) 



Decomposition of the Joint Probability Distribution 
With Independence

• Independence: The joint probability can be 
decomposed into

𝑷𝑷 𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛1, … ,𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛 = 

𝑷𝑷 𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛1 × ⋯× 𝑷𝑷 𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛 = �
𝑖𝑖=1

𝑛𝑛

𝑷𝑷(𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛𝑖𝑖)

• We need for each coin one parameter for the 
chance of getting Head.

• Independence reduces the numbers needed to 
specify the joint distribution from 𝟐𝟐𝒏𝒏 − 𝟏𝟏 to 𝒏𝒏. 

• If we have identical (iid) coins, then we even 
only need 2 numbers, the probability of H and 
the number of coins.

2𝑛𝑛 − 1 entries

𝑛𝑛 entries



Conditional Independence

• Conditional independence: A and B are conditionally independent 
given C (i.e., we know the value of C) iff  

𝑷𝑷(𝐴𝐴,𝐵𝐵 | 𝐶𝐶)  =  𝑷𝑷(𝐴𝐴 | 𝐶𝐶) 𝑷𝑷(𝐵𝐵 | 𝐶𝐶)
Example:

• If the patient has a cavity, the probability that the probe catches does not 
depend on whether he/she has a toothache

P(Catch | Toothache, Cavity) = P(Catch | Cavity)
• Therefore, Catch is conditionally independent of Toothache given Cavity
• Likewise, Toothache is conditionally independent of Catch given Cavity
   P(Toothache | Catch, Cavity) = P(Toothache | Cavity)

Cavity
Toothache

Catch



Decomposition of the Joint Probability Distribution 
With Conditional Independence

• Conditional independence 
simplifies the chain rule:

 

P(Toothache, Catch, Cavity) = 
P(Cavity) P(Catch | Cavity) P(Toothache | Catch, Cavity) = 
P(Cavity) P(Catch | Cavity) P(Toothache | Cavity)

• In many practical applications, conditional independence reduces 
the space requirements significantly from 𝑶𝑶(𝟐𝟐𝒏𝒏) to 𝑶𝑶 𝒏𝒏 . 

• This makes Bayesian Networks (in the next chapter) so useful.

Cavity
Toothache

Catch

23 − 1 =
7 entries

1 + 2 + 2 =
5 entries



Bayesian Decision Making
Making Decisions Under Uncertainty Based on Evidence



Probabilistic Inference

Suppose the agent must guess the value of an 
unobserved query variable 𝑋𝑋 given some observed 
evidence 𝐸𝐸 =  𝑒𝑒 and we assume 𝑋𝑋 probabilistically 
causes 𝐸𝐸.

Example: 

x ∈  {zebra, giraffe, hippo}, e = image features 

What is the best guess 𝑥𝑥∗?

Notation: We use �𝑥𝑥 for an estimate and 𝑥𝑥∗ for the best 
estimate.



The Optimal Bayes Decision Rule
• Assumption: The agent has a loss function, which is 0 if the 

value of X (x) is guessed correctly, and 1 otherwise.

𝐿𝐿 𝑥𝑥, �𝑥𝑥 =  �1 if �𝑥𝑥 ≠ 𝑥𝑥, and
0 otherwise. 

• The value for X that minimizes the expected loss is the one that 
has the greatest posterior probability given the evidence.

    argmax𝑥𝑥 𝑃𝑃(𝑋𝑋 =  𝑥𝑥 | 𝐸𝐸 =  𝑒𝑒)

• This is called the MAP (maximum a posteriori) decision. 
The MAP decision is optimal!



MAP: Maximum A Posteriori Decision

Use the value 𝑥𝑥 that has the highest (maximum) 
posterior probability given the evidence 𝑒𝑒

𝑥𝑥∗ = argmax𝑥𝑥 𝑃𝑃 (𝑥𝑥|𝑒𝑒) = argmax𝑥𝑥
𝑃𝑃(𝑒𝑒|𝑥𝑥)𝑃𝑃(𝑥𝑥)

𝑃𝑃(𝑒𝑒)
    ∝ argmax𝑥𝑥 𝑃𝑃(𝑒𝑒|𝑥𝑥)𝑃𝑃(𝑥𝑥)

likelihood

Prior Prob.Posterior Prob.

For comparison: the frequentist 
maximum likelihood decision 
ignores 𝑃𝑃(𝑥𝑥)

𝑥𝑥∗ = argmax𝑥𝑥 𝑃𝑃 (𝑒𝑒|𝑥𝑥)

𝑃𝑃 𝑒𝑒  is fixed for 
a given example.



MAP: Example

Value of 𝑥𝑥 that has the highest (maximum) posterior probability 
given the evidence 𝑒𝑒.
 𝑥𝑥 ∈  {zebra, dog, cat}, e = stripes

𝑥𝑥∗ = argmax𝑥𝑥 𝑃𝑃 (𝑥𝑥|𝑒𝑒) = argmax𝑥𝑥
𝑃𝑃(stripes|𝑥𝑥)𝑃𝑃(𝑥𝑥)

𝑃𝑃(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)
     ∝ argmax𝑥𝑥 𝑃𝑃(stripes|𝑥𝑥)𝑃𝑃(𝑥𝑥)

The likelihood 𝑃𝑃(stripes | zebra) is the highest, but it also 
depends on the prior 𝑃𝑃 zebra , the chance that we see a zebra. If 
the likelihood for cats is smaller, but the prior probability is much 
higher, cat may have a larger posterior probability!

Posterior Prob.

likelihood Prior Prob.



Bayes Classifier

• Suppose we have many different types of observations (evidence, 
symptoms, features) 𝐹𝐹1, … ,𝐹𝐹𝑛𝑛 that we want to use to decide on an 
underlying hypothesis 𝐻𝐻.

• MAP decision involves estimating

argmaxh∈𝐻𝐻  𝑃𝑃(𝑓𝑓1, … , 𝑓𝑓𝑛𝑛|ℎ)𝑃𝑃(ℎ) 

• If each feature can take on k values, how many entries are in the 
joint probability table 𝑃𝑃(𝑓𝑓1, … , 𝑓𝑓𝑛𝑛, ℎ)?

• The table has O(𝑛𝑛𝑘𝑘) entries! 
What if we have 1000s of features?

𝐹𝐹1,𝐹𝐹2, … ,𝐹𝐹𝑛𝑛,𝐻𝐻



Naïve Bayes Model

• Suppose we have many different types of observations (evidence, 
symptoms, features) 𝐹𝐹1, … ,𝐹𝐹𝐹𝐹 that we want to use to obtain 
evidence about an underlying hypothesis 𝐻𝐻

• MAP decision involves estimating
argmaxh∈𝐻𝐻  𝑃𝑃(𝑓𝑓1, … , 𝑓𝑓𝑛𝑛|ℎ)𝑃𝑃(ℎ) 

• Issue: The likelihood table size grows exponentially with the 
number of features 𝑛𝑛.

• We can make the simplifying assumption that the different 
features are conditionally independent given the hypothesis. 
This reduces the joint probability distribution table from O(𝑛𝑛𝑘𝑘) to 
size O(𝑘𝑘 × 𝑛𝑛):

argmaxh∈𝐻𝐻  𝑃𝑃(ℎ) �
𝑖𝑖=1

𝑛𝑛

𝑃𝑃(𝑓𝑓𝑖𝑖|ℎ)

𝐹𝐹1 𝐹𝐹2 𝐹𝐹𝑛𝑛…

𝐻𝐻



Example: Naïve Bayes Spam Filter

We need the following:
• A hypothesis H:  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 or ¬spam 
• Define features of the message.
• Estimate the parameters to make a MAP decision which minimizes the 

classification error (0-1 loss)



Message Features: 
Bag of Words from NLP
• Model a document as a vector of binary random variables 𝑊𝑊1, … ,𝑊𝑊𝑛𝑛 . 
• Each random variable represents if a specific word 𝑖𝑖 is present (𝑊𝑊𝑖𝑖 =
𝑤𝑤𝑖𝑖 = 1) or not (𝑊𝑊𝑖𝑖 = 𝑤𝑤𝑖𝑖 = 0)  in the message.

• Simplifications used by bag-of-words:
• The order of the words in the message is ignored.
• How often a word is repeated is ignored.



Naïve Bayes Spam Filter Using Words

• We use the simplifying assumption that each word is conditionally 
independent of the others given the message class (h = spam or not 
spam):

𝑃𝑃(message|h) = 𝑃𝑃(𝑤𝑤1, … ,𝑤𝑤𝑛𝑛|h) = �
𝑖𝑖=1

𝑛𝑛

𝑃𝑃(𝑤𝑤𝑖𝑖|h)

• Now we can calculate the a posteriori probability after the evidence of 
the message as

𝑃𝑃(h|𝑤𝑤1, … ,𝑤𝑤𝑛𝑛) ∝ 𝑃𝑃(h)∏𝑖𝑖=1
𝑛𝑛 𝑃𝑃(𝑤𝑤𝑖𝑖|h) 

priorposterior likelihoods 
(presents and 

absence of words)

Note: It is only 
proportional since 
we do not divide 
by 𝑃𝑃(𝑤𝑤1, … ,𝑤𝑤𝑛𝑛)



Naïve Bayes Spam Filter:
Model and Decision

• Model

𝑃𝑃 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∝ 𝑃𝑃 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �
𝑖𝑖=1

𝑛𝑛

𝑃𝑃 𝑤𝑤𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑃𝑃 ¬𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∝ 𝑃𝑃 ¬𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �
𝑖𝑖=1

𝑛𝑛

𝑃𝑃 𝑤𝑤𝑖𝑖 ¬𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(¬𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)

• Decision: 𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑥𝑥ℎ 𝑃𝑃 ℎ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

that means predict spam if  
           
   𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) > 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(¬𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)

• Needed Data: 𝑷𝑷 𝐻𝐻  and 𝑷𝑷 𝑊𝑊𝑖𝑖 𝐻𝐻



Naïve Bayes Spam Filter: 
Parameter Estimation
Count in training data:

𝑃𝑃 𝐻𝐻 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
# 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + 1

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 # 𝑜𝑜𝑜𝑜 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + # 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑃𝑃 𝑤𝑤𝑖𝑖 = 1 | 𝐻𝐻 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
# 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡𝑡𝑡𝑡 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 + 1

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 # 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + # 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

Prior 𝑷𝑷(𝐻𝐻)

spam:  0.33

¬spam:  0.67 

𝑃𝑃(𝑊𝑊𝑖𝑖  =  1 | 𝐻𝐻 =  ¬𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)𝑃𝑃(𝑊𝑊𝑖𝑖  =  1 | 𝐻𝐻 =  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)

+ likelihoods for the 
absence of words:

𝑃𝑃 𝑊𝑊𝑖𝑖  =  0 𝐻𝐻 =  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)  =  1 −  𝑃𝑃 𝑊𝑊𝑖𝑖  =  1 𝐻𝐻 =  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)
𝑃𝑃 𝑊𝑊𝑖𝑖  =  0 𝐻𝐻 =  ¬𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)  =  1 −  𝑃𝑃 𝑊𝑊𝑖𝑖  =  1 𝐻𝐻 =  ¬𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) 
 

Smoothing for 
low counts.



Summary

Decision theory
To make decisions under uncertainty requires:

1. Estimating probabilities of outcomes for different actions.
2. Assign utility to outcomes.
3. Choose the action with the larges expected utility. 

Bayes decision rule
Choose the most likely outcome by minimizing expected 0-1 loss. Required 
steps:

1. Estimate prior probabilities of outcomes and the likelihood of seeing 
evidence given different outcomes.

2. Use the evidence to update the probability of the outcome. 
3. Apply the MAP decision rule to determine the most likely outcome.

• A general framework for learning functions and decision rules from data 
is the goal of Machine Learning.

• Issue is that we need to define/learn the complete joint probability 
distribution! Much of ML is about overcoming this issue.



Appendix: A 
Quick Review 
of Probability 

Theory
Random variables

Events
Joint probabilities

Marginal probabilities
Conditional probabilities

Bayes’ Rule
Independence



Random Variables

• We describe the (uncertain) state of the world using random variables.
• Random variables are denoted by capital letters.

• R: Is it raining?
• W: What’s the weather?
• Die: What is the outcome of rolling two dice?
• V: What is the speed of my car (in MPH)?

Random Variable

• Random variables take on values in a domain D.
• Domain values must be mutually exclusive and exhaustive.

• R ∈ {True, False}
• W ∈ {Sunny, Cloudy, Rainy, Snow}
• Die ∈ {(1,1), (1,2), … (6,6)}
• V ∈ [0, 200]

Domain



Events and Propositions
Probabilistic statements are defined over 
events, world states or sets of states
• “It is raining”
• “The weather is either cloudy or 

snowy”
• “The sum of the two dice rolls is 11”
• “My car is going between 30 and 50 

miles per hour”

Events are described using 
propositions:
• R = True
• W = “Cloudy” ∨ W = 

“Snowy”
• D ∈ {(5,6), (6,5)}
• 30 ≤ S ≤ 50

Notation:
• 𝑃𝑃(𝑋𝑋 =  𝑥𝑥) or 𝑃𝑃𝑋𝑋(𝑥𝑥) or 𝑃𝑃(𝑥𝑥) for short, is the probability of 

the event that random variable 𝑋𝑋 has taken on the value 𝑥𝑥.
• For propositions it means the probability of the set of 

possible worlds in which the proposition holds. 



Kolmogorov’s 3 Axioms of Probability

Three axioms are sufficient to define probability theory:
1. Probabilities are non-negative real numbers.
2. The probability that at least one atomic event happens is 1.
3. The probability of mutually exclusive events is additive.

This leads to important properties (A and B are sets of events):
• Numeric bound: 0 ≤ 𝑃𝑃 𝐴𝐴 ≤ 1
• Monotonicity: if 𝐴𝐴 ⊆ 𝐵𝐵 then 𝑃𝑃 𝐴𝐴 ≤ 𝑃𝑃 𝐵𝐵
• Addition law: 𝑃𝑃 𝐴𝐴 ∪ 𝐵𝐵 = 𝑃𝑃 𝐴𝐴 + 𝑃𝑃 𝐵𝐵 − 𝑃𝑃(𝐴𝐴 ∩ 𝐵𝐵)
• Probability of the empty set: 𝑃𝑃 ∅ = 0
• Complement rule: 𝑃𝑃 ¬𝐴𝐴 = 1 − 𝑃𝑃 𝐴𝐴

• Continuous variables need in addition the definition of density 
functions.



Atomic Events

• Atomic event: a complete specification of the state of the 
world, or a complete assignment of domain values to all 
random variables.

• Atomic events are mutually exclusive and exhaustive.

• E.g., if the world consists of only two Boolean variables 
Cavity and Toothache, then there are 4 distinct atomic 
events:
  Cavity = false ∧Toothache = false
  Cavity = false ∧ Toothache = true
  Cavity = true ∧ Toothache = false
  Cavity = true ∧ Toothache = true



Joint Probability Distributions

• A joint distribution is an assignment of probabilities to every 
possible atomic event.

• Notation:
• 𝑃𝑃(𝑥𝑥),𝑃𝑃(𝑋𝑋 = 𝑥𝑥) is the probability that random variable X takes 

on value x
• 𝑷𝑷(𝑋𝑋) is the distribution of probabilities for all possible values 

of X. Often we are lazy or forget to make P bold.

Atomic event P

Cavity = false ∧Toothache = false 0.8

Cavity = false ∧ Toothache = true 0.1

Cavity = true ∧ Toothache = false 0.05

Cavity = true ∧ Toothache = true 0.05

Sum: 1.00



Marginal Probability Distributions

Sometimes we are only interested in one variable. This is 
called the marginal distribution 𝑷𝑷(𝑌𝑌)

P(Cavity, Toothache)

Cavity = false ∧Toothache = false 0.8

Cavity = false ∧ Toothache = true 0.1

Cavity = true ∧ Toothache = false 0.05

Cavity = true ∧ Toothache = true 0.05

M
ar

gi
na

l 
Pr

ob
. D

ist
r. P(Cavity)

Cavity = false ?
Cavity = true ?

P(Toothache)

Toothache = false ?
Toothache = true ?



Marginal Probability Distributions 2

• Suppose we have the joint distribution 𝑷𝑷(𝑋𝑋,𝑌𝑌) and we 
want to find the marginal distribution 𝑷𝑷(𝑌𝑌)

• General rule: to find 𝑃𝑃(𝑋𝑋 =  𝑥𝑥), sum the probabilities 
of all atomic events where 𝑋𝑋 =  𝑥𝑥. This is called 
“summing out” or marginalization.

𝑃𝑃(𝑋𝑋 = 𝑥𝑥) = 𝑃𝑃 (𝑋𝑋 = 𝑥𝑥 ∧ 𝑌𝑌 = 𝑦𝑦1) ∨ ⋯∨ (𝑋𝑋 = 𝑥𝑥 ∧ 𝑌𝑌 = 𝑦𝑦𝑛𝑛)

= 𝑃𝑃 (𝑥𝑥,𝑦𝑦1) ∨ ⋯∨ (𝑥𝑥, 𝑦𝑦𝑛𝑛) = �
𝑖𝑖=1

𝑛𝑛

𝑃𝑃(𝑥𝑥,𝑦𝑦𝑖𝑖)



Marginal Probability Distributions 3

Suppose we have the joint distribution 𝑷𝑷(𝑋𝑋,𝑌𝑌) and 
we want to find the marginal distribution 𝑷𝑷 𝑌𝑌 .

P(Cavity, Toothache)

Cavity = false ∧Toothache = false 0.8

Cavity = false ∧ Toothache = true 0.1

Cavity = true ∧ Toothache = false 0.05

Cavity = true ∧ Toothache = true 0.05

M
ar

gi
na

l 
Pr

ob
. D

ist
r. P(Cavity)

Cavity = false 0.8+0.1 = 0.9

Cavity = true 0.05+0.05=0.1

P(Toothache)

Toothache = false 0.8+0.0.5= 0.85

Toothache = true 0.1+0.05= 0.15



Conditional Probability

• Probability of cavity given toothache: 
 P(Cavity = true | Toothache = true)

• For any two events A and B, 𝑃𝑃 𝐴𝐴 𝐵𝐵) = 𝑃𝑃(𝐴𝐴, 𝐵𝐵)
𝑃𝑃(𝐵𝐵)

 

𝑃𝑃(𝐴𝐴) 𝑃𝑃(𝐵𝐵)

𝑃𝑃(𝐴𝐴,𝐵𝐵)



Conditional Probability 2
Jo

in
t P

ro
b.

 D
ist

r. P(Cavity, Toothache)

Cavity = false ∧Toothache = false 0.8

Cavity = false ∧ Toothache = true 0.1

Cavity = true ∧ Toothache = false 0.05

Cavity = true ∧ Toothache = true 0.05

M
ar

gi
na

l 
Pr

ob
. D

ist
r. P(Cavity)

Cavity = false 0.9
Cavity = true 0.1

P(Toothache)

Toothache = false 0.85

Toothache = true 0.15

𝑃𝑃 𝐴𝐴 𝐵𝐵) =
𝑃𝑃(𝐴𝐴,𝐵𝐵)
𝑃𝑃(𝐵𝐵)

• What is P(Cavity = true | Toothache = false)?
0.05 / 0.85 = 0.059

• What is P(Cavity = false | Toothache = true)?
0.1 / 0.15 = 0.667



Conditional Distributions

P(Cavity, Toothache)

Cavity = false ∧Toothache = false 0.8

Cavity = false ∧ Toothache = true 0.1

Cavity = true ∧ Toothache = false 0.05

Cavity = true ∧ Toothache = true 0.05

A conditional distribution is a distribution over the values of one 
variable given fixed values of other variables

P(Cavity | Toothache = true)

Cavity = false 0.667

Cavity = true 0.333

P(Cavity | Toothache = false)

Cavity = false 0.941
Cavity = true 0.059

P(Toothache | Cavity = true)

Toothache= false 0.5
Toothache = true 0.5

P(Toothache | Cavity = false)

Toothache= false 0.889
Toothache = true 0.111

𝑃𝑃 𝐴𝐴 𝐵𝐵) =
𝑃𝑃(𝐴𝐴,𝐵𝐵)
𝑃𝑃(𝐵𝐵)



Normalization Trick

To get the whole conditional distribution 𝑷𝑷(𝑋𝑋 | 𝑌𝑌 =  𝑦𝑦) at once, select all entries 
in the joint distribution matching 𝑌𝑌 =  𝑦𝑦 and renormalize them to sum to one.

P(Cavity, Toothache)

Cavity = false ∧Toothache = false 0.8

Cavity = false ∧ Toothache = true 0.1

Cavity = true ∧ Toothache = false 0.05

Cavity = true ∧ Toothache = true 0.05

Select P(X, Y = y)
Toothache, Cavity = false

Toothache= false 0.8

Toothache = true 0.1 Sum is 𝑃𝑃 𝑌𝑌 = 𝑦𝑦 = 0.9

Renormalize sum to 1 (= divide by 𝑃𝑃(𝑌𝑌 = 𝑦𝑦))
P(Toothache | Cavity = false)

Toothache= false 0.889

Toothache = true 0.111

Equivalent to 
𝑷𝑷 𝑋𝑋 𝑌𝑌 = 𝑦𝑦)  =  𝛼𝛼 𝑷𝑷(𝑋𝑋,𝑌𝑌 = 𝑦𝑦) 
 with 𝛼𝛼 = 1/𝑃𝑃(𝑌𝑌 = 𝑦𝑦)
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