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Probability Theory Recap

» Notation:  Prob. of anevent P(X = x) = P(x)
Prob. distribution P(X) = (P(X = x1),P(X = x3), ..., P(X = xp,))

= Product rule P(x,y) = P(x|y)P(y)
= Chain rule P(Xy, Xy, o, Xy) = P(X)P(X5|X)P(X5|Xq, Xy) ..
= H?=1P(X_l'|X1, "'rXi—l)
. . _ Pxy) _
= Conditional probability P(x|y) = o) aP(x,y)

= Independence
= X1Y: X,Y areindependent (written as X 1L Y) if and only if:
vx,y: P(x,y) = P(x)P(y)

" X L Y|Z: X and Y are conditionally independent given Z if and only if:
Vx,y,z:P(x,y|z) = P(x|z)P(y|z)
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Bayesian Networks

Modeling a Joint Distribution



Bayesian Networks

(aka Belief Networks) @
o

A type of graphical model.
75Y A way to specify dependence between random variables.

4 A compact specification of a full joint probability distribution.

ﬁz A general and important model to reason with uncertainty in Al.




Structure of Bayesian Networks

Nodes: Random variables @

* Can be assigned (observed

or unassigned (unobserved) Toothache @

Arcs: Dependencies
 An arrow from one variable to another indicates direct
influence.

* Show independence
* Weather is independent of the other variables (no connection).

* Toothache and Catch are conditionally independent given Cavity
(directed arc).

* Must form a directed acyclic graph (DAG)

A network with all random variables assigned represents a
state of the system.



Example: N independent coin flips

Complete independence: no interactions between coin flips

P(Xy, Xy, s Xn) = P(X)P(Xy) ... P(X,)

Joint probability Marginal probability
distribution distributions




Example: Naive Bayes spam filter

Random variables:
* (: message class (spam or not spam)
« W,,...,W,: presence or absence of words comprising the message

Words depend on the class, but they are modeled conditional independent
of each other given the class (= no direct connection between words).

P(Wy, Wy, ..., W, |C) = P(W;|C)P(W,|C) ... P(W,,|C)



Example: Burglar Alarm

* Description: | have a burglar alarm that is sometimes set off by minor
earthquakes. My two neighbors, John and Mary, promised to call me
at work if they hear the alarm

* Example inference task: suppose Mary calls and John doesn’t call.
What is the probability of a burglary?

* What are the random variables?
e Burglary, Earthquake, Alarm, JohnCalls, MaryCalls

* What are the direct influence relationships?
* A burglar can set off the alarm
* An earthquake can set off the alarm
* The alarm can cause Mary to call
* The alarm can cause John to call



Example: Burglar Alarm as a Network

Burglary Earthquake

What are the model parameters?




Parameters: Conditional probability tables

To specify the full joint distribution, we need to specify a
conditional distribution for each node given its parents as a
conditional probability table (CPT): P (X | Parents(X))




Example: Burglar Alarm with CPTs

JohnCalls

P(B=true)

001

P(J=true(A4)

B
b Y

90
03

P(E=true) |
Earthquake 02|
B P(A=true|B,E)
t 95
rf 94
fot 29
S f 001
A | PiM=true|d)
t J0
MaryCalls F 0]

No parents

2 parents

1 parent



The joint probability distribution
* For each node X, we know P(X, | Parents(X))

* How do we get the full joint distribution P(X,, ..., X,)?

* Using chain rule:

n n
P(X,, . X)) = 1_[ P(X,|Xy, o Xit) = 1_[ P(X,|Parents(X;))
i=1 i=1

/® Construct
* Example: m following
@ @ arrows

P(J,M,A,B,E) = P(B)P(E)P(A|B,E)P(J|A) P(M | A)



Dependence

e Example: causal chain
X: Low pressure

®—®—>@ Y: Rain

Z: Traffic

* Are X and Z independent?

1. Conditioning: P(X,Y,Z) =PX)P(Y|X)P(Z|Y)

2. Marginalize overy: P(X,Z) = X, P(X)P(y|X)P(Z|y)
= P(X) 2y P(Z|y)P(y|X) # P(X)P(Z)

X and Z are not
independent!



Conditional independence

* Example: causal chain

X: Low pressure

®—>®—>@ Y: Rain

Z: Traffic
* |s Z independent of X given Y?

= Definition of

pxy,z) _ P(X)P(Y|X)P(Z|Y) conditional

independence

1. Conditioning: P(X,Z|Y) =

P(Y) P(Y)
p(X)wp(Zly)
2. 2.Bayes’rule: = Pzg)(?/) = PX|Y)P(Z|Y)

X and Z are conditionally
independent given Y



Conditional independence cont.

e Common cause

Y: Project due

X: Newsgroup
busy

Z: Lab full

e Are X and Z independent?
* No
* Are they conditionally independent
given Y?
* Yes

e Common effect

X: Raining
Z: Ballgame
Y: Traffic

e Are X and Z independent?
* Yes
* Are they conditionally independent
given Y?
* No



©
C t
ompactness @m@

* Suppose we have a Boolean variable X; with k Boolean parents.
How many rows does its conditional probability table have?
 2¥ rows for all the combinations of parent values, each row requires one
number p for X; = true

* |f each variable has no more than k parents, how many numbers
does the complete network require?

* O(n - 2%) numbers —vs. 0(2") for the full joint distribution
* This reduces the complexity from exponential to linear in n!

* Example: How many nodes for the burglary network?

1+1+4+ 2+ 2 =10numbers
(vs. specification of the complete joint probability 2° — 1 = 31)



Constructing Bayesian networks

1. Choose an ordering of variables X, ... , X,

2. Fori = 1ton
* add X, to the network

* select parents from X, ... , X;_1 such that
P(X; | Parents(X; )) P(X | X, o XiZ1)
that is, add a connection only from nodes it directly
depends on.

Note: There are many ways to order the variables. Networks are typically
constructed by domain experts with causality in mind. E.g., Fire causes

Smoke:

The resulting network is sparse and conditional probabilities are easier to
judge because they represent causal relationships.



A more realistic Bayes Network: Car diagnosis

* Initial observation: car won’t

start.
fanbelt * Green: testable evidence.
broke broke * Orange: reasons: “if broken,
then fix it”

* Gray: “hidden variables” to
ensure sparse structure,

reduce parameters
no charging

Initial
Observation




Summary

* Bayesian networks provide a natural representation for joint
probabilities used to calculated conditional probabilities
used in inference.

» Conditional independence (induced by causality) reduces
the number of needed parameters.

P(B,E,A,],M) is defined by

* Representation @ G
* Topology

* Conditional probability tables

* Generally easy for
domain experts to construct

P(E=true)
002

Earthquake

P(A=true|B,E)
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Exact Inference in BN

Calculate the posterior probability given evidence



Exact Inference

Goal
* Query variables: X
* Evidence (observed) variables: E = e
 Set of unobserved variables: Y
* Calculate the probability of X given e.

If we know the full joint distribution P(X, E,Y), we can infer X by:

P(X,
P(X|E = e) = f,(e;’) x Z:P(X, e,y)
y

Sum over values of

unobservable variables =
marginalizing them out.




P(E=true)
002

Exact inference:

Exa m p | e B E| P(A=true|B.E)
it .95
t f .94
Fot .29
rr .001

PlJ=true|4)
¢ .90
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A| PiM=true|A)
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JohnCalls

Assume we can observe being called and the two variables have the
values j and m. We want to know the probability of a burglary.
Query: P(B | j,m) with unobservable variables: Earthquake, Alarm

P(b,j,

P(b|j,m) = }Egjmn;) x Z z P(b,e,a,j,m)
e a Full joint

- Z Z P(b)P(e)P(alb, €)P(j|a)P(m|a) probability anc

marginalize over

Eand A

- P() z P(e) z P(alb, €) P(jla)P(m|a)



Exact inference:

Example

P(blj,m)

x P(b) z P(e) Z P(alb, ) P(j|a)P(m|a)

Evaluatior
(lines represe
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Issues with Exact Inference in Al

P(X,
P(X|E = e) = IE(:) x Z P(X, e,7)

Problems
1. Full joint distributions are tooAarge to store.

Bayes nets provide significaht savings for representing the
conditional probability structure.

2. Marginalizing out mafiy unobservable variables Y may involve too
many summation terms.

This summation is called exact inference by enumeration.
Unfortunately, it does not scale well (#p-hard).

In praxis, approximate inference by sampling is used.
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Approximate Inference in BN

Estimate the posterior probability given evidence



BN as a Generative Model

aa Bayesian networks can be used as generative models.

A Allows us to efficiently generate samples from the
L: joint distribution.

Q) Idea: Generate samples from the network to estimate
— joint and conditional probability distributions.



Prior-Sample Algorithm to Create a Sample
(Event)

function PRIOR-SAMPLE(bn) returns an event sampled from the prior specified by bn
inputs: bn. a Bayesian network specifying joint distribution P( X1, ..., X,,)

X + an event with n elements
for each vanable X; in X{...., X, do

x[7] +—a randony sample from P(X; | parents(X;))
return x

We need to start with
the random variables

that have no parents.

P(W]s.r)
.99

S R
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¢ fl 90
fe| 90
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Example: Sampling from a Bayesian Network

P(C)
50

C [P(S|O) C |P(R|C)
T .10 w @ T 80
F | 50 F| 20

ke

S R[P(W|SR)
T T| .99
T F| .90
F T| .90
F F| .01




Example: Sampling from a Bayesian Network

P(C)
Draw a random value S
using the probability. 20

c |pesio) C |P(RIC)
T .10 @ @ T 80
Fl 50 F| 20

k

S RI[P(W[S.R)
T T| .99
T F| .90
F T| .90
F F| 01




Example: Sampling from a Bayesian Network

P(C)
50

C |Ps[O) C |P(RIC)
T 10 w @ T 80
F| 50 F| 20

Wet
Grass

S R[P(W|S.R)
T T| .99
T F| .90
F T| .90
F F| .01




Example: Sampling from a Bayesian Network

P(C)
50

C [P(S[C) C [PRIC)
T | .10 T| 80
F | .50 F| 20

ke

S R[P(W|SR)
T T| .99
T F| .90
F T| .90
F F| .01




Example: Sampling from a Bayesian Network

P(C)
50

C [P(S[C) C [PRIC)
T | .10 T| 80
F | .50 F| 20

ke

S R[P(W|SR)
T T| .99
T F| .90
F T| .90
F F| .01




Example: Sampling from a Bayesian Network

.

P(S|C)

o

10
.50

P(C)

50

C |P(R|C)
T | .80
F 1l .20

S RI[P(W|S,R)
T T| .99
T F| 90
F T| .90
F F| .01

Prior Sample returns the
event:

[C=True, S = False,
R = True, W = True]




Estimating the Joint Probability Distribution

Sample N times and determine Np¢(xq, X5, ..., X5,), the count
of how many times Prior-Sample produces event

)
(x1 X2, uny xn).

NPS(xl' X2y wees xn)
N

P(xy, %y, .0, Xy) =

The marginal probability of partially specified event (some x
values are known) can also be calculates. E.g.,

p(xl) _ NPSA(,xl)




Estimating Conditional Probabilities:
Rejection sampling

Sample N times and ignore the samples that are not
consistent with the evidence e.

Nps(X, e)
Nps(e)

P(X|e) = aNps(X,e) =

Issue: What if e is a rare event?

* Example: burglary A earthquake
* Rejection sampling ends up throwing away most of the
samples. This is very inefficient!



Estimating Conditional Probabilities:
Rejection sampling

function REJECTION-SAMPLING(X . e, bn, N) returns an estimate of P(X |e)
inputs: X, the query variable
e, observed values for variables E
bn, a Bayesian network
N, the total number of samples to be generated
local variables: C, a vector of counts for each value of X', imtially zero

for j=1to N do
X — PRIDR—SAMPLE(E}?U
if x 1s consistent with e then

We throw away many samples
if e is rare!

Clj] 4 C[j]+1 where z; is the value of X inx
return NORMALIZE(C)



Estimating Conditional Probabilities:
Importance sampling (likelihood weighting)

Goal: Avoid the need of rejection sampling to
throw out samples. Example: Evidence = it rains

1. Fix the evidence E = e for sampling and
estimate the probably for the non-evidence
variables using prior-sampling.

QWS (x) Rain ,
NP
t /N0
2. Correct the probabilities using weights AL 2N
P(x|le) = w(x)Qus(x) / ——— 1.Fixas
A S true
: . . , 2. Correct : ;f 38
Iglrcnuslgtlé’ijthe weights in this case can be easily sampled —t 7
probabilities

w(x) = % L_l[P(einarents(Ei))



Estimating Conditional Probabilities:
Markov Chain Monte Carlo Sampling (MCMC)

* Generates a sequence of samples instead of creating each sample
individually from scratch.

* Create a state by making random changes to the current state. The sequence
of states forms a random process called a Markov Chain (MC).

* The MCs stationary distribution turns out to be the posterior distribution of
the non-evidence variables.

* Estimate the stationary distribution using Monte Carlo simulation by
counting how often each state is reached and normalize to obtain probability

estimates.

e Algorithms:
1. Gibbs sampling (works well for BNs)
2.  Metropolis-Hastings sampling

Note: Simulated annealing belongs to the family of MCMC algorithms.



Gibbs sampling in Bayes Networks

function GIBBS-ASK(X,e, bn, N) returns an estimate of P(.X |e)
local variables: C, a vector of counts for each value of X, initially zero

Z.. the nonevidence variables in bn
x. the current state of the network. initialized from e Random
State
mitialize x with random values for the variables in Z

for k=1to N do
choose any variable Z; from Z according to any distribution p(7) variable
set the value of Z; in x by sampling from P(Z; | mb(Z;))
C[j] < C[j| + 1 where z; is the value of X inx w
return NORMALIZE(C)

* mb(Z;) is the Markov blanket of random variable Z; (all variables it
can be dependent of, i.e., parents, children and parents of children).

P(z;lmb(Z;)) = aP(z;|parents(Z;)) 1_[ P(y;|parents(Y;))

Y Echildren(X;)



Gibbs Sampling: Example

Find
P(Rain |Sprinkler = true, WetGrass = true).

Determine states and calculate transition probabilities

of the Markov chain for changing one variable using
P(z;lmb(Z;)).

The algorithm randomly wanders around in this graph
using the stated transition probabilities.

Assume that we observe 20 states with Rain =
true and 60 with rain = false:

NORMALIZE ({20,60)) = (0.25,0.75)

P(Rain |Sprinkler = true,WetGrass = true) =
0.75

unknown

0.4074

S 60
0.2778 0.0238

Note the self-loops: the state stays the same
when either variable is chosen and then
resamples the same value it already has.
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Conclusion

* Bayesian networks provide an efficient way to store
a complete probabilistic model by exploiting
(conditional) independence between variables.

* Inference means querying the model for a
conditional probability given some evidence.

* Exact inference is difficult, for all but tiny models.

 State of the art is to use approximate inference by
sampling from the model.

» Software libraries provide general inference
engines.
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