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Probability Theory Recap
 Notation: Prob. of an event 𝑃𝑃 𝑋𝑋 = 𝑥𝑥 = 𝑃𝑃(𝑥𝑥)

                  Prob. distribution 𝑷𝑷 𝑋𝑋 = 𝑃𝑃 𝑋𝑋 = 𝑥𝑥1 ,𝑃𝑃 𝑋𝑋 = 𝑥𝑥2 , … ,𝑃𝑃 𝑋𝑋 = 𝑥𝑥𝑛𝑛

 Product rule   𝑃𝑃 𝑥𝑥,𝑦𝑦 = 𝑃𝑃 𝑥𝑥 𝑦𝑦 𝑃𝑃(𝑦𝑦)
 Chain rule   𝑷𝑷 X1, X2, … , Xn = 𝐏𝐏 X1 𝐏𝐏 X2 X1 𝐏𝐏 X3 X1, X2 …

                  = ∏𝑖𝑖=1
𝑛𝑛 𝑷𝑷(𝑋𝑋_𝑖𝑖|𝑋𝑋1, … ,𝑋𝑋𝑖𝑖−1) 

 Conditional probability  𝑃𝑃 𝑥𝑥 𝑦𝑦 = 𝑃𝑃(𝑥𝑥,𝑦𝑦)
𝑃𝑃(𝑦𝑦)

= 𝛼𝛼𝛼𝛼(𝑥𝑥,𝑦𝑦)

 Independence
  𝑋𝑋 ⫫ 𝑌𝑌: 𝑋𝑋,𝑌𝑌 are independent (written as 𝑋𝑋 ⫫ 𝑌𝑌) if and only if: 

∀𝑥𝑥,𝑦𝑦:𝑃𝑃 𝑥𝑥,𝑦𝑦 = 𝑃𝑃 𝑥𝑥 𝑃𝑃(𝑦𝑦)

 𝑋𝑋 ⫫ 𝑌𝑌|𝑍𝑍: 𝑋𝑋 and 𝑌𝑌 are conditionally independent given 𝑍𝑍 if and only if:
∀𝑥𝑥,𝑦𝑦, 𝑧𝑧:𝑃𝑃 𝑥𝑥,𝑦𝑦 𝑧𝑧 = 𝑃𝑃 𝑥𝑥 𝑧𝑧 𝑃𝑃(𝑦𝑦|𝑧𝑧)
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Bayesian Networks
Modeling a Joint Distribution



Bayesian Networks
(aka Belief Networks)

A type of graphical model.

A way to specify dependence between random variables.

A compact specification of a full joint probability distribution.

A general and important model to reason with uncertainty in AI.

Weather Cavity

Toothache Catch



Structure of Bayesian Networks

Nodes: Random variables
• Can be assigned (observed)

or unassigned (unobserved)

Arcs: Dependencies
• An arrow from one variable to another indicates direct 

influence.
• Show independence

• Weather is independent of the other variables (no connection).
• Toothache and Catch are conditionally independent given Cavity 

(directed arc).
• Must form a directed acyclic graph (DAG)

A network with all random variables assigned represents a 
state of the system.

Weather Cavity

Toothache Catch



Example: N independent coin flips

Complete independence: no interactions between coin flips

X1 X2 Xn
…

𝑃𝑃 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛 = 𝑃𝑃 𝑋𝑋1 𝑃𝑃 𝑋𝑋2 …𝑃𝑃(𝑋𝑋𝑛𝑛)

Joint probability 
distribution

Marginal probability 
distributions



Example: Naïve Bayes spam filter

Random variables:
• 𝐶𝐶: message class (spam or not spam)
• 𝑊𝑊1, … ,𝑊𝑊𝑛𝑛: presence or absence of words comprising the message

Words depend on the class, but they are modeled conditional independent 
of each other given the class (= no direct connection between words).

W1 W2 Wn
…

C

𝑃𝑃 𝑊𝑊1,𝑊𝑊2, … ,𝑊𝑊𝑛𝑛|𝐶𝐶 = 𝑃𝑃 𝑊𝑊1|𝐶𝐶 𝑃𝑃 𝑊𝑊2|𝐶𝐶 …𝑃𝑃(𝑊𝑊𝑛𝑛|𝐶𝐶)



Example: Burglar Alarm

• Description: I have a burglar alarm that is sometimes set off by minor 
earthquakes. My two neighbors, John and Mary, promised to call me 
at work if they hear the alarm

• Example inference task: suppose Mary calls and John doesn’t call. 
What is the probability of a burglary?

• What are the random variables? 
• Burglary, Earthquake, Alarm, JohnCalls, MaryCalls

• What are the direct influence relationships?
• A burglar can set off the alarm
• An earthquake can set off the alarm
• The alarm can cause Mary to call
• The alarm can cause John to call



Example: Burglar Alarm as a Network

What are the model parameters?



Parameters: Conditional probability tables

To specify the full joint distribution, we need to specify a 
conditional distribution for each node given its parents as a 
conditional probability table (CPT): 𝑃𝑃 (𝑋𝑋

 
| 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑋𝑋))

Z1 Z2 Zn

X

…

𝑃𝑃 (𝑋𝑋
 
| 𝑍𝑍1, … ,𝑍𝑍𝑍𝑍)



Example: Burglar Alarm with CPTs

No parents

2 parents

1 parent



The joint probability distribution

• For each node Xi, we know P(Xi | Parents(Xi))
• How do we get the full joint distribution P(X1, …, Xn)?

• Using chain rule:

𝑃𝑃(𝑋𝑋1, … ,𝑋𝑋𝑛𝑛) = �
𝑖𝑖=1

𝑛𝑛

𝑃𝑃 𝑋𝑋𝑖𝑖|𝑋𝑋1, … ,𝑋𝑋𝑖𝑖−1 = �
𝑖𝑖=1

𝑛𝑛

𝑃𝑃 𝑋𝑋𝑖𝑖|𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑋𝑋𝑖𝑖)

• Example:
 

𝑃𝑃(𝐽𝐽,𝑀𝑀,𝐴𝐴,𝐵𝐵,𝐸𝐸)  =  𝑃𝑃(𝐵𝐵) 𝑃𝑃(𝐸𝐸) 𝑃𝑃(𝐴𝐴 | 𝐵𝐵,𝐸𝐸) 𝑃𝑃(𝐽𝐽 | 𝐴𝐴) 𝑃𝑃(𝑀𝑀 | 𝐴𝐴)

Construct 
following 
arrows



Dependence

• Example: causal chain

• Are X and Z independent?

1. Conditioning:     𝑃𝑃 𝑋𝑋,𝑌𝑌,𝑍𝑍 = 𝑃𝑃 𝑋𝑋 𝑃𝑃 𝑌𝑌 𝑋𝑋 𝑃𝑃 𝑍𝑍 𝑌𝑌
2. Marginalize over y: 𝑃𝑃 𝑋𝑋,𝑍𝑍 = ∑𝑦𝑦 𝑃𝑃 𝑋𝑋 𝑃𝑃 𝑦𝑦 𝑋𝑋 𝑃𝑃 𝑍𝑍 𝑦𝑦
     =  𝑃𝑃 𝑋𝑋 ∑𝑦𝑦 𝑃𝑃 𝑍𝑍 𝑦𝑦 𝑃𝑃 𝑦𝑦 𝑋𝑋 ≠ 𝑃𝑃(𝑋𝑋)𝑃𝑃(𝑍𝑍) 

X and Z are not 
independent!



Conditional independence

• Example: causal chain

• Is Z independent of X given Y?

1. Conditioning: 𝑃𝑃 𝑋𝑋,𝑍𝑍 𝑌𝑌 = 𝑃𝑃(𝑋𝑋,𝑌𝑌,𝑍𝑍)
𝑃𝑃(𝑌𝑌)

= P(X)P(Y|X)P(Z|Y)
𝑃𝑃(𝑌𝑌)

 

2. 2. Bayes’ rule:       =
𝑃𝑃 𝑋𝑋 𝑃𝑃(𝑋𝑋|𝑌𝑌)𝑃𝑃 𝑌𝑌

𝑃𝑃(𝑋𝑋) 𝑃𝑃(𝑍𝑍|𝑌𝑌)

𝑃𝑃(𝑌𝑌)
 = P(X|Y)P(Z|Y)

= Definition of 
conditional 
independence

X and Z are conditionally 
independent given Y



Conditional independence cont.

• Common cause

• Are X and Z independent?
• No

• Are they conditionally independent 
given Y?

• Yes

• Common effect

• Are X and Z independent?
• Yes

• Are they conditionally independent 
given Y?

• No



Compactness

• Suppose we have a Boolean variable 𝑋𝑋𝑖𝑖 with 𝑘𝑘 Boolean parents. 
How many rows does its conditional probability table have? 

• 2𝑘𝑘 rows for all the combinations of parent values, each row requires one 
number p for 𝑋𝑋𝑖𝑖 = true

• If each variable has no more than 𝑘𝑘 parents, how many numbers 
does the complete network require? 

• 𝑂𝑂(𝑛𝑛 · 2𝑘𝑘) numbers – vs. 𝑂𝑂(2𝑛𝑛) for the full joint distribution
• This reduces the complexity from exponential to linear in 𝑛𝑛!

• Example: How many nodes for the burglary network? 
1 + 1 + 4 + 2 + 2 = 10 numbers 

(vs. specification of the complete joint probability 25 − 1 =  31)



Constructing Bayesian networks

1. Choose an ordering of variables 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛
2. For 𝑖𝑖 =  1 to 𝑛𝑛

• add 𝑋𝑋𝑖𝑖 to the network
• select parents from 𝑋𝑋1, … ,𝑋𝑋𝑖𝑖−1 such that

𝑃𝑃(𝑋𝑋𝑖𝑖  | 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑋𝑋𝑖𝑖))  =  𝑃𝑃(𝑋𝑋𝑖𝑖  | 𝑋𝑋1, … 𝑋𝑋𝑖𝑖−1)
that is, add a connection only from nodes it directly 
depends on. 

Note: There are many ways to order the variables. Networks are typically 
constructed by domain experts with causality in mind. E.g., Fire causes 
Smoke:

The resulting network is sparse and conditional probabilities are easier to 
judge because they represent causal relationships.

Fire Smoke



A more realistic Bayes Network: Car diagnosis
• Initial observation: car won’t 

start.
• Green: testable evidence.
• Orange: reasons: “if broken, 

then fix it” 
• Gray: “hidden variables” to 

ensure sparse structure, 
reduce parameters

Initial 
Observation



Summary

• Bayesian networks provide a natural representation for joint 
probabilities used to calculated conditional probabilities 
used in inference.

• Conditional independence (induced by causality) reduces 
the number of needed parameters. 

• Representation
• Topology
• Conditional probability tables
• Generally easy for 

domain experts to construct

𝑃𝑃(𝐵𝐵,𝐸𝐸,𝐴𝐴, 𝐽𝐽,𝑀𝑀) is defined by



Exact Inference in BN
Calculate the posterior probability given evidence



Exact Inference

Goal
• Query variables: 𝑋𝑋
• Evidence (observed) variables: 𝐸𝐸 =  𝑒𝑒 
• Set of unobserved variables: 𝑌𝑌  
• Calculate the probability of 𝑋𝑋 given 𝑒𝑒.

If we know the full joint distribution 𝑃𝑃(𝑋𝑋,𝐸𝐸,𝑌𝑌), we can infer 𝑋𝑋 by:

𝑷𝑷(𝑋𝑋|𝐸𝐸 = 𝑒𝑒) =
𝑷𝑷(𝑋𝑋, 𝑒𝑒)
𝑃𝑃(𝑒𝑒) ∝�

𝑦𝑦

𝑷𝑷(𝑋𝑋, 𝑒𝑒,𝑦𝑦)

Sum over values of 
unobservable variables = 
marginalizing them out.



Exact inference:  
Example

Assume we can observe being called and the two variables have the 
values 𝑗𝑗 and 𝑚𝑚. We want to know the probability of a burglary.
Query: 𝑃𝑃(𝐵𝐵 | 𝑗𝑗,𝑚𝑚) with unobservable variables: Earthquake, Alarm

𝑃𝑃(𝑏𝑏|𝑗𝑗,𝑚𝑚) =
𝑃𝑃(𝑏𝑏, 𝑗𝑗,𝑚𝑚)
𝑃𝑃(𝑗𝑗,𝑚𝑚)

∝�
𝑒𝑒

�
𝑎𝑎

𝑃𝑃(𝑏𝑏, 𝑒𝑒, 𝑎𝑎, 𝑗𝑗,𝑚𝑚)

= �
𝑒𝑒

�
𝑎𝑎

𝑃𝑃(𝑏𝑏)𝑃𝑃(𝑒𝑒)𝑃𝑃(𝑎𝑎|𝑏𝑏, 𝑒𝑒)𝑃𝑃(𝑗𝑗|𝑎𝑎)𝑃𝑃(𝑚𝑚|𝑎𝑎)

= 𝑃𝑃(𝑏𝑏)�
𝑒𝑒

𝑃𝑃(𝑒𝑒)�
𝑎𝑎

𝑃𝑃(𝑎𝑎|𝑏𝑏, 𝑒𝑒)𝑃𝑃(𝑗𝑗|𝑎𝑎)𝑃𝑃(𝑚𝑚|𝑎𝑎)

Full joint 
probability and 

marginalize over 
E and A



Exact inference: 
Example
𝑃𝑃 𝑏𝑏 𝑗𝑗,𝑚𝑚

∝ 𝑃𝑃(𝑏𝑏)�
𝑒𝑒

𝑃𝑃(𝑒𝑒)�
𝑎𝑎

𝑃𝑃(𝑎𝑎|𝑏𝑏, 𝑒𝑒)𝑃𝑃(𝑗𝑗|𝑎𝑎)𝑃𝑃(𝑚𝑚|𝑎𝑎)

Evaluation tree 
(lines represent multiplications)

�
𝑒𝑒

�
𝑎𝑎



Issues with Exact Inference in AI

Problems
1. Full joint distributions are too large to store.

Bayes nets provide significant savings for representing the 
conditional probability structure.

2. Marginalizing out many unobservable variables Y may involve too 
many summation terms.

This summation is called exact inference by enumeration. 
Unfortunately,  it does not scale well (#p-hard).

In praxis, approximate inference by sampling is used. 

𝑷𝑷(𝑋𝑋|𝐸𝐸 = 𝑒𝑒) =
𝑷𝑷(𝑋𝑋, 𝑒𝑒)
𝑃𝑃(𝑒𝑒)

∝�
𝑦𝑦

𝑷𝑷(𝑋𝑋, 𝑒𝑒,𝑦𝑦)



Approximate Inference in BN
Estimate the posterior probability given evidence



BN as a Generative Model

Bayesian networks can be used as generative models.

Allows us to efficiently generate samples from the 
joint distribution.

Idea: Generate samples from the network to estimate 
joint and conditional probability distributions.



Prior-Sample Algorithm to Create a Sample 
(Event)

We need to start with 
the random variables 
that have no parents.



Example: Sampling from a Bayesian Network



Example: Sampling from a Bayesian Network

Draw a random value 
using the probability.



Example: Sampling from a Bayesian Network



Example: Sampling from a Bayesian Network



Example: Sampling from a Bayesian Network



Example: Sampling from a Bayesian Network

Prior Sample returns the 
event:

    [C = True, S = False, 
      R = True, W = True]



Estimating the Joint Probability Distribution

Sample N times and determine 𝑁𝑁𝑃𝑃𝑃𝑃 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 , the count 
of how many times Prior-Sample produces event 
𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 .

�𝑃𝑃 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 =
𝑁𝑁𝑃𝑃𝑃𝑃(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛)

𝑁𝑁

The marginal probability of partially specified event (some x 
values are known) can also be calculates. E.g.,

�𝑃𝑃 𝑥𝑥1 =
𝑁𝑁𝑃𝑃𝑃𝑃(𝑥𝑥1)

𝑁𝑁



Estimating Conditional Probabilities: 
Rejection sampling

Sample N times and ignore the samples that are not 
consistent with the evidence e.

�𝑃𝑃 𝑋𝑋|𝑒𝑒 = 𝛼𝛼𝑁𝑁𝑃𝑃𝑃𝑃 𝑋𝑋, 𝑒𝑒 =
𝑁𝑁𝑃𝑃𝑃𝑃(𝑋𝑋, 𝑒𝑒)
𝑁𝑁𝑃𝑃𝑃𝑃 𝑒𝑒

Issue: What if e is a rare event? 
• Example: burglary ∧ earthquake
• Rejection sampling ends up throwing away most of the 

samples. This is very inefficient!



Estimating Conditional Probabilities: 
Rejection sampling

We throw away many samples 
if e is rare!



Estimating Conditional Probabilities: 
Importance sampling (likelihood weighting)

Goal: Avoid the need of rejection sampling to 
throw out samples.

1. Fix the evidence 𝑬𝑬 =  𝒆𝒆 for sampling and 
estimate the probably for the non-evidence 
variables using prior-sampling.

𝑄𝑄𝑊𝑊𝑊𝑊(𝑥𝑥)

2. Correct the probabilities using weights
𝑃𝑃 𝑥𝑥 𝑒𝑒 = 𝑤𝑤 𝑥𝑥 𝑄𝑄𝑊𝑊𝑊𝑊(𝑥𝑥)

Turns out the weights in this case can be easily 
calculated

𝑤𝑤 𝑥𝑥 =
1

𝑃𝑃(𝑒𝑒)
 �
𝑖𝑖=1

𝑚𝑚

𝑃𝑃 𝑒𝑒𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝐸𝐸𝑖𝑖))

Example: Evidence = it rains

1. Fix as 
true

2. Correct 
sampled 

probabilities



Estimating Conditional Probabilities: 
Markov Chain Monte Carlo Sampling (MCMC)

• Generates a sequence of samples instead of creating each sample 
individually from scratch.

• Create a state by making random changes to the current state. The sequence 
of states forms a random process called a Markov Chain (MC).

•  The MCs stationary distribution turns out to be the posterior distribution of 
the non-evidence variables.

• Estimate the stationary distribution using Monte Carlo simulation by 
counting how often each state is reached and normalize to obtain probability 
estimates.

• Algorithms:
1. Gibbs sampling (works well for BNs)
2. Metropolis-Hastings sampling

Note: Simulated annealing belongs to the family of MCMC algorithms.



Gibbs sampling in Bayes Networks

• 𝑚𝑚𝑚𝑚(𝑍𝑍𝑖𝑖) is the Markov blanket of random variable 𝑍𝑍𝑖𝑖 (all variables it 
can be dependent of, i.e., parents, children and parents of children).

𝑃𝑃 𝑧𝑧𝑖𝑖 𝑚𝑚𝑚𝑚 𝑍𝑍𝑖𝑖 = 𝛼𝛼𝛼𝛼 𝑧𝑧𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑍𝑍𝑖𝑖)) �
𝑌𝑌𝑖𝑖∈𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑋𝑋𝑖𝑖)

𝑃𝑃 𝑦𝑦𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑌𝑌𝑗𝑗

Random 
State

Change one 
variable

Count



Gibbs Sampling: Example
Find
𝑃𝑃(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 |𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡). 

Determine states and calculate transition probabilities 
of the Markov chain for changing one variable using 
𝑃𝑃 𝑧𝑧𝑖𝑖 𝑚𝑚𝑚𝑚 𝑍𝑍𝑖𝑖 .

The algorithm randomly wanders around in this graph 
using the stated transition probabilities.

Assume that we observe 20 states with 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 and 60 with 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓:

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 20,60 = 0.25,0.75

𝑃𝑃(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 |𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) ≈
0.75 

true
true

unknown

?

Note the self-loops: the state stays the same 
when either variable is chosen and then 
resamples the same value it already has. 

20 visits 60 visits



Conclusion

• Bayesian networks provide an efficient way to store 
a complete probabilistic model by exploiting 
(conditional) independence between variables.

• Inference means querying the model for a 
conditional probability given some evidence.

• Exact inference is difficult, for all but tiny models.

• State of the art is to use approximate inference by 
sampling from the model.

• Software libraries provide general inference 
engines.
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