
CS 5/7320 
Artificial Intelligence

Learning 
from Examples
AIMA Chapter 19

Slides by Michael Hahsler  
Based on slides by Dan Klein, Pieter Abbeel, Sergey 
Levine and  A. Farhadi (http://ai.berkeley.edu)
with figures from the AIMA textbook.

This work is licensed under a Creative Commons 
Attribution-ShareAlike 4.0 International License. Online Material

http://ai.berkeley.edu/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/


Topics

ML & 
Agents

Supervised 
Learning Data Training & 

Testing

Types of 
supervised 
ML Models

Use in AI



ML and Agents

DeepAi.org with prompt: “A happy cartoon robot with an artificial neural 
network for a brain on white background learning to play chess”



Learning from Examples: Machine Learning

Machine Learning
• Learning = Improve performance after making observations about the world. 

That is, learn what works and what doesn’t. 
• We learn a model that decides on the actions to take. This is called the 

“performance element.”
• The goal is to get closer to optimal decisions. I.e., it is an optimization problem.

Up until now in this course:
• Hand-craft algorithms to make rational/optimal or at least good decisions. 

Examples: Search strategies, heuristics.

Issues
• Designer cannot anticipate all possible future situations.
• Designer may have examples but does not know how to program a solution.



From Chapter 2: Agents that Learn
The learning element modifies the performance element to improve its 
performance.

Critic: How is the agent 
currently performing?

Learning Element: Update 
the performance element 

and changes how it 
selects actions.

E.g., adding rules, 
changing weights

Problem generators: 
Explore actions that lead 

to better information



Types of Using Machine Learning
1. What component of the performance element is learned? 

 E.g., how to select action, estimate the utility of a state, …

2. What representation (model) is used in the component? 
 Linear regression, rules, trees, neural nets,…

3. What feedback is available for learning?
• Unsupervised Learning: No feedback, just organize data (e.g., clustering, embedding)

• Supervised Learning: Uses a data set with correct answers. Learn a function (model) to 
map an input (e.g., state) to an output (e.g., action or utility). 
Examples:
 Use a naïve Bayesian classifier to distinguish between spam/no spam
 Learn a playout policy to simulate games (current board -> good move)

• Reinforcement Learning: Learn from rewards/punishment (e.g., winning a game) obtained 
via interaction with the environment over time.

We focus 
here on 

supervised 
learning



Supervised 
Learning

1+1=2



Supervised Learning As Function Approximation
• Examples 

• We assume there exists a target function 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) that produces iid (independent 
and identically distributed) examples possibly with noise and errors.

• Examples are observed input-output pairs E = 𝑥𝑥1,𝑦𝑦1 , … , 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 , … , 𝑥𝑥𝑁𝑁 ,𝑦𝑦𝑁𝑁 , 
where 𝑥𝑥 is a vectors called the feature vector.

• Learning problem
• Given a hypothesis space H of representable models.
• Find a hypothesis ℎ ∈ 𝐻𝐻 such that �𝑦𝑦𝑖𝑖 =  ℎ 𝑥𝑥𝑖𝑖  ≈  𝑦𝑦𝑖𝑖  ∀𝑖𝑖
• That is, we want to approximate 𝑓𝑓 by ℎ using E. 

• Supervised learning includes
• Classification (outputs = class labels). E.g., 𝑥𝑥 is an email and 𝑓𝑓(𝑥𝑥) is spam / ham.
• Regression (outputs = real numbers). E.g., x is a house and 𝑓𝑓(𝑥𝑥) is its selling price.

𝑓𝑓

Set of all 
functions



Consistency vs. Simplicity
Example: Univariate curve fitting (regression, function approximation)

• Consistency: ℎ 𝑥𝑥𝑖𝑖 ≈  𝑦𝑦𝑖𝑖  
• Simplicity: small number of model parameters

x … 𝑓𝑓 𝑥𝑥
lines … ℎ(𝑥𝑥)

y yExamples

Very simple, 
but not very 
consistent 
with the 

data!

Learned Models



Measuring Consistency using Loss
Goal of learning: Find a  hypothesis that makes predictions that are 
consistent with the examples E = 𝑥𝑥1,𝑦𝑦1 , … , 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 , … , 𝑥𝑥𝑁𝑁,𝑦𝑦𝑁𝑁 .
That is,   �𝑦𝑦 = ℎ 𝑥𝑥 ≈ 𝑦𝑦.

• Measure mistakes: Loss function 𝐿𝐿 𝑦𝑦, �𝑦𝑦 = 𝐿𝐿(𝑓𝑓 𝑥𝑥 ,ℎ(𝑥𝑥))
• Absolute-value loss  𝐿𝐿1 𝑦𝑦, �𝑦𝑦 = |𝑦𝑦 − �𝑦𝑦|
• Squared-error loss  𝐿𝐿2 𝑦𝑦, �𝑦𝑦 = 𝑦𝑦 − �𝑦𝑦 2

• 0/1 loss   𝐿𝐿0/1 𝑦𝑦, �𝑦𝑦 = 0 if 𝑦𝑦 = �𝑦𝑦, else 1
• Log loss, cross-entropy loss and many others… 

For Regression
For Classification

𝑓𝑓

ℎ∗

Loss



Learning Consistent ℎ by Minimizing the Loss

• Empirical loss
𝐸𝐸𝐸𝐸𝐸𝐸𝐿𝐿𝐸𝐸𝐸𝐸𝐸𝐸𝐿𝐿,𝐸𝐸(ℎ) =

1
|𝐸𝐸|

�
𝑥𝑥,𝑦𝑦 ∈𝐸𝐸

𝐿𝐿(𝑦𝑦, ℎ 𝑥𝑥 )

• Find the best hypothesis that minimizes the loss
ℎ∗ = argmin

ℎ∈ 𝐻𝐻
𝐸𝐸𝐸𝐸𝐸𝐸𝐿𝐿𝐸𝐸𝐸𝐸𝐸𝐸𝐿𝐿,𝐸𝐸(ℎ)

• Reasons for ℎ∗ ≠ 𝑓𝑓
a) Realizability: 𝑓𝑓 ∉ 𝐻𝐻
b)  𝑓𝑓 is nondeterministic or examples are noisy.
c) It is computationally intractable to search all 𝐻𝐻, 

so we use a non-optimal heuristic. 

𝑓𝑓

ℎ∗

Loss



The Most Consistent Classifier
The Bayes Classifier
For 0/1 loss, the empirical loss is minimized by the model that predicts for each 𝑥𝑥 the most likely class 𝑦𝑦 using 
MAP (Maximum a posteriori) estimates.  This is called the Bayes classifier.

h∗ x = argmax
𝑦𝑦

 𝑃𝑃 𝑌𝑌 = 𝑦𝑦 𝑋𝑋 = 𝑥𝑥) =  argmax
𝑦𝑦

𝑃𝑃 𝑥𝑥 𝑦𝑦) 𝑃𝑃(𝑦𝑦)
𝑃𝑃(𝑥𝑥)

= argmax
𝑦𝑦

𝑃𝑃 𝑥𝑥 𝑦𝑦) 𝑃𝑃(𝑦𝑦)

Optimality: The Bayes classifier is optimal for 0/1 loss. It is the most consistent classifier possible with the lowest 
possible error called the Bayes error rate. No better classifier is possible!

Issue: The classifier requires to learn 𝑃𝑃 𝑥𝑥 𝑦𝑦) 𝑃𝑃 𝑦𝑦 = 𝑃𝑃(𝑥𝑥,𝑦𝑦) from the examples.

• It needs the complete joint probability which requires in the general case a probability table with one entry for 
each possible value for the feature vector 𝑥𝑥. 

• This is impractical (unless a simple Bayes network exists) and most classifiers try to approximate the Bayes 
classifier using a simpler model with fewer parameters.



Simplicity
Ease of use

• Simpler hypotheses have fewer model parameters to estimate and store.

Generalization: How well does the hypothesis perform on new data?
• We do not want the model to be too specific to the training examples (an issue called 

overfitting).
• Simpler models typically generalize better to new examples.

How to achieve simplicity?
a) Model bias: Restrict 𝐻𝐻 to simpler models (e.g., assumptions like independence, 

only consider linear models). 
b) Feature selection: use fewer variables from the feature vector 𝑥𝑥
c) Regularization: penalize model for its complexity (e.g., number of parameters)

ℎ∗ = argmin
ℎ∈ 𝐻𝐻

𝐸𝐸𝐸𝐸𝐸𝐸𝐿𝐿𝐸𝐸𝐸𝐸𝐸𝐸𝐿𝐿,𝐸𝐸(ℎ) + 𝜆𝜆 𝐶𝐶𝐸𝐸𝐸𝐸𝐸𝐸𝐶𝐶𝐶𝐶𝑥𝑥𝑖𝑖𝐶𝐶𝑦𝑦(ℎ)

Penalty term



Model Selection: Bias vs. Variance

Low    Variance: difference in the model due to slightly different data.   high

High                 Bias: restrictions by the model class                     Low

Points: Two 
samples from the 
same generating 
function 𝑓𝑓.

Lines: the learned 
model function ℎ∗.

More consistentSimpler

Overfitting

This is a tradeoff



Data



The Dataset

Find a hypothesis (called “model”) to predict the class given the features.

Examples
(Instances,

Observation)

Feature vector 𝑥𝑥 
(Features, Variables, Attributes)

Class
Label 𝑦𝑦



Feature Engineering
• Add information sources as new variables to the model.

• Add derived features that help the classifier (e.g., 𝑥𝑥1𝑥𝑥2, 𝑥𝑥12).

• Embedding: E.g., convert words to vectors where vector similarity 
between vectors reflects semantic similarity. 

• Example for Spam detection: In addition to words
• Have you emailed the sender before?
• Have 1000+ other people just gotten the same email?
• Is the email in ALL CAPS?

• Feature Selection: Which features should be used in the model is a 
model selection problem (choose between models with different 
features).



Data in AI

• Data in AI can come from many sources

• Observation: Record video of a task being 
performed.

• Existing Data: Download documents from the 
internet to train Large Language Models.

• Simulation: E.g., simulated games using a 
playout strategy.

• Expert feedback on how well a task was 
performed.



Training 
and 

Testing



Model Evaluation (Testing)

The model was trained on the training examples 𝐸𝐸. We want to test how well the model 
will perform on new examples 𝑇𝑇 (i.e., how well it generalizes to new data).

• Testing loss: Calculate the empirical loss for predictions on a testing data set 𝑇𝑇 that is 
different from the data used for training.

𝐸𝐸𝐸𝐸𝐸𝐸𝐿𝐿𝐸𝐸𝐸𝐸𝐸𝐸𝐿𝐿,𝑇𝑇(ℎ) =
1

|𝑇𝑇| �
𝑥𝑥,𝑦𝑦 ∈𝑇𝑇

𝐿𝐿(𝑦𝑦, ℎ 𝑥𝑥 )

• For classification we often use the accuracy measure, the proportion of correctly 
classified test examples.  

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑦𝑦 ℎ,𝑇𝑇 =
1
𝑇𝑇

�
(𝑥𝑥,𝑦𝑦)∈𝑇𝑇 

[ℎ 𝑥𝑥 = 𝑦𝑦] = 1 −  𝐸𝐸𝐸𝐸𝐸𝐸𝐿𝐿𝐸𝐸𝐸𝐸𝐸𝐸𝐿𝐿0/1,𝑇𝑇(ℎ)

𝑎𝑎  is an indicator function returning 1 if 𝑎𝑎 =  𝑇𝑇𝑎𝑎𝑎𝑎𝐶𝐶 and otherwise 0 



Training a Model

• Models are “trained” (learned) on the training data. This 
involved estimating:

1. Model parameters (the model): E.g., probabilities, weights, 
factors.

2. Hyperparameters: Many learning algorithms have choices for 
learning rate, regularization 𝜆𝜆, maximal decision tree depth, 
selected features,... The algorithm tries to optimizes the model 
parameters given user-specified hyperparameters.

• We need to tune the hyperparameters! 
This is a type of model selection.

Training
Data

Test     
Data    



Hyperparameter Tuning/Model Selection
1. Hold a validation data set back from the training data.
2. Learn models using the training set with different 

hyperparameters. Often a grid of possible hyperparameter 
combinations or some greedy search is used.

3. Evaluate the models using the validation data and choose 
the model with the best accuracy. Selecting the right type of 
model, hyperparameters and features is called model 
selection.

4. Learn the final model with the chosen hyperparameters 
using all training (including validation data).

• Notes: 
• The validation set was not used for training with different 

hyperparameters, so we get generalization accuracy for comparing 
different hyperparameter settings.

• If no model selection is necessary, then no validation set is used.

Training
Data

Test     
Data    

Training
Data

Validation
Data



Testing a Model

• After the model is selected, the final model is evaluated 
against the test set to estimate the final model accuracy and 
see how well it generalizes.

• Very important: never contaminate your training set with test 
data or “peek” at the test set during training!

Training
Data

Test   
Data   



How to Split the Dataset
• Random splits: Split the data randomly in, e.g., 

 60% training, 20% validation, and 20% testing.

• Stratified splits: Like random splits, but balance classes or other 
properties of the examples.

• k-fold cross validation: Use training & validation data better
• Split the training & validation data randomly into k folds.
• For each of k rounds, hold one fold back for testing and use the remaining 
𝑘𝑘 − 1 folds for training.

• Use the average error/accuracy as a better estimate.
• Some algorithms/tools do this internally.

• LOOCV (leave-one-out cross validation): 𝑘𝑘 =  𝑛𝑛 used if very little 
data is available. 

Test
Data

Training
Data

Training
Data

Validation
Data



Learning Curve: 
The Effect the Training Data Size

Ac
cu

ra
cy

Accuracy of a classifier 
when the amount of 
available training data 
increases.

More data is better!

At some point the 
learning curve flattens 
out and more data does 
not contribute much!



Comparing to a Baselines

• First step: get a baseline
• Baselines are very simple straw man model.
• Helps to determine how hard the task is.
• Helps to find out what a good accuracy is.

• Weak baseline: The most frequent label classifier
• Gives all test instances whatever label was most common in the training set.

• Example: For spam filtering, give every message the label “ham.”
• Accuracy might be very high if the problem is skewed (called class imbalance).

• Example: If calling everything “ham” gets already 66% right, so a classifier that gets 70% isn’t very good…

• Strong baseline: For research, we typically compare to previous published state-
of-the-art as a baseline.



Types of 
ML Models

Regression: Predict a number
Classification: Predict a label



Regression: Linear Regression
Model:  ℎ𝒘𝒘 𝒙𝒙𝑗𝑗 = 𝑤𝑤𝑜𝑜 + 𝑤𝑤1𝑥𝑥𝑗𝑗,1 + ⋯+ 𝑤𝑤𝑛𝑛𝑥𝑥𝑗𝑗,𝑛𝑛 = ∑𝑖𝑖 𝑤𝑤𝑖𝑖𝑥𝑥𝑗𝑗,𝑖𝑖 = 𝒘𝒘𝑇𝑇𝒙𝒙𝑗𝑗 

Empirical Loss: 𝐿𝐿 𝒘𝒘 = 𝑿𝑿𝒘𝒘− 𝒚𝒚 𝟐𝟐
Squared error loss over the whole data matrix 𝑿𝑿

Gradient: ∇𝐿𝐿 𝒘𝒘 = 2𝑿𝑿𝑇𝑇 𝑿𝑿𝒘𝒘− 𝒚𝒚
The gradient is a vector of partial derivatives 

∇𝐿𝐿 𝒘𝒘 =
𝜕𝜕𝐿𝐿
𝜕𝜕𝑤𝑤1

(𝒘𝒘),
𝜕𝜕𝐿𝐿
𝜕𝜕𝑤𝑤2

(𝒘𝒘), … ,
𝜕𝜕𝐿𝐿
𝜕𝜕𝑤𝑤𝑛𝑛

(𝒘𝒘)
𝑇𝑇

Find: ∇𝐿𝐿 𝒘𝒘 = 0
 
Gradient descend:
  𝒘𝒘 = 𝒘𝒘− 𝛼𝛼∇𝐿𝐿 𝒘𝒘

Analytical solution:
 𝒘𝒘∗ = 𝑿𝑿𝑇𝑇𝑿𝑿 −1𝑿𝑿𝑇𝑇𝒚𝒚

Pseudo inverse

∇𝐿𝐿 𝒘𝒘
𝒘𝒘



Naïve Bayes Classifier

• Approximates a Bayes classifier with the naïve independence assumption that all 𝑛𝑛 
features are conditional independent given the class.

ℎ 𝑥𝑥 = argmax
𝑦𝑦

 𝑃𝑃 𝑦𝑦  �
𝑖𝑖=1

𝑛𝑛

𝑃𝑃 𝑥𝑥𝑖𝑖  𝑦𝑦)

   The 𝑃𝑃 𝑦𝑦 s and the 𝑃𝑃 𝑥𝑥𝑖𝑖  𝑦𝑦)s are estimated from the data by counting.

• Gaussian Naïve Bayes Classifiers extend the approach to continuous features by 
assuming the feature follows a normal distribution depending on the class:

𝑃𝑃 𝑥𝑥𝑖𝑖  𝑦𝑦) ~ 𝑁𝑁 𝜇𝜇𝑦𝑦,𝜎𝜎𝑦𝑦

The parameters for the normal distribution 𝑁𝑁 𝜇𝜇𝑦𝑦,𝜎𝜎𝑦𝑦  are estimated from data.

Bayes Classifier
h∗ x = argmax

𝑦𝑦
 𝑃𝑃 𝑌𝑌 = 𝑦𝑦 𝑋𝑋 = 𝑥𝑥) 



Decision Trees

• A sequence of decisions represented as a tree.
• Many implementations that differ by 

• How to select features to split? 
• When to stop splitting?
• Is the tree pruned?

• Approximates a Bayesian classifier by  
ℎ(𝑥𝑥) = argmax

𝑦𝑦
 𝑃𝑃 𝑌𝑌 = 𝑦𝑦 leafNodeMatching(𝑥𝑥)) 

Bayes Classifier
h∗ x = argmax

𝑦𝑦
 𝑃𝑃 𝑌𝑌 = 𝑦𝑦 𝑋𝑋 = 𝑥𝑥) 



K-Nearest Neighbors Classifier

• Class is predicted by looking at the majority in the set of the k nearest neighbors. 𝑘𝑘 is a 
hyperparameter. Larger 𝑘𝑘 smooth the decision boundary.

• Neighbors are found using a distance measure (e.g., Euclidean distance between points).
• Approximates a Bayesian classifier by 

ℎ(𝑥𝑥) = argmax
𝑦𝑦

𝑃𝑃 𝑌𝑌 = 𝑦𝑦 neighborhood(𝑥𝑥)) 

Bayes Classifier
h∗ x = argmax

𝑦𝑦
 𝑃𝑃 𝑌𝑌 = 𝑦𝑦 𝑋𝑋 = 𝑥𝑥) 



Support Vector Machine (SVM)

• Linear classifier that finds the maximum margin separator using only the 
points that are “support vectors” and quadratic optimization.

• The kernel trick can be used to learn non-linear decision boundaries.

Margin

Decision 
boundary 



Artificial Neural Networks/Deep Learning

Bias term Non-linear activation function

Hidden Layer

Computational graph
For classification 

typically a softmax 
activation function 
returning 𝑷𝑷(𝑦𝑦|𝑥𝑥)

Perceptron

• Represent �𝑦𝑦 = ℎ 𝑥𝑥  as a network 
of weighted sums with non-linear 
activation functions g (e.g., 
logistic, ReLU).

• Learn weights 𝐰𝐰 from examples 
using backpropagation of 
prediction errors L( �𝑦𝑦,𝑦𝑦) (gradient 
descend).

• ANNs are universal 
approximators. Large networks 
can approximate any function (no 
bias). Regularization is typically 
used to avoid overfitting.

• Deep learning adds more hidden 
layers and layer types (e.g., 
convolution layers) for better 
learning.



Other 
Popular 
Models and 
Methods

• Generalized linear model (GLM): This important 
model family includes linear regression and the 
classification method logistic regression. 

Many other models exist

• Regularization: enforce simplicity and reduces 
overfitting by using a penalty for complexity.

• Kernel trick: Let a linear classifier learn non-linear 
decision boundaries ( = a linear boundary in a high 
dimensional space).

• Ensemble Learning: Use many models and combine 
the results (e.g., random forest, boosting).

• Embedding and Dimensionality Reduction: Learn 
how to represent data in a simpler way (e.g., PCA, 
text embeddings).

Often used methods



Some Use Cases of ML for Intelligent Agents

Bottom line: Learning a function is often more effective than hard-coding it
However, we do not always know how it performs in very rare cases!

Learn Actions

• Directly learn the best 
action from examples. 

𝑎𝑎𝑎𝑎𝐶𝐶𝑖𝑖𝐸𝐸𝑛𝑛 = ℎ(𝐸𝐸𝐶𝐶𝑎𝑎𝐶𝐶𝐶𝐶)

• This model can also be 
used as a playout policy 
for Monte Carlo tree 
search with data from 
self-play. 

Learn Heuristics

• Learn evaluation 
functions for states. 

𝐶𝐶𝑒𝑒𝑎𝑎𝐶𝐶 = ℎ(𝐸𝐸𝐶𝐶𝑎𝑎𝐶𝐶𝐶𝐶)

• Can learn a heuristic for 
minimax search from 
examples. 

Perception 

• Natural language 
processing: Use deep 
learning / word 
embeddings / language 
models to understand 
concepts, translate 
between languages, or 
generate text.

• Speech recognition: 
Identify the most likely 
sequence of words. 

• Vision: Object 
recognition in 
images/videos. 
Generate images/video.

Compressing Tables

• Neural networks can be 
used as a compact 
representation of tables 
that do not fit in 
memory. E.g.,
• Joint and conditional

probability tables
• State utility tables

• The tables can be 
learned form data.


	CS 5/7320 �Artificial Intelligence��Learning �from Examples�AIMA Chapter 19��Slides by Michael Hahsler  �Based on slides by Dan Klein, Pieter Abbeel, Sergey Levine and  A. Farhadi (http://ai.berkeley.edu)�with figures from the AIMA textbook.�
	Topics
	ML and Agents
	Learning from Examples: Machine Learning
	From Chapter 2: Agents that Learn
	Types of Using Machine Learning
	Supervised Learning
	Supervised Learning As Function Approximation
	Consistency vs. Simplicity
	Measuring Consistency using Loss
	Learning Consistent ℎ by Minimizing the Loss
	The Most Consistent Classifier�The Bayes Classifier
	Simplicity
	Model Selection: Bias vs. Variance
	Data
	The Dataset
	Feature Engineering
	Data in AI
	Training �and �Testing
	Model Evaluation (Testing)
	Training a Model
	Hyperparameter Tuning/Model Selection
	Testing a Model
	How to Split the Dataset
	Learning Curve: �The Effect the Training Data Size
	Comparing to a Baselines
	Types of �ML Models
	Regression: Linear Regression
	Naïve Bayes Classifier
	Decision Trees
	K-Nearest Neighbors Classifier
	Support Vector Machine (SVM)
	Artificial Neural Networks/Deep Learning
	Other Popular Models and Methods
	Some Use Cases of ML for Intelligent Agents

