
CS 5/7320
Artificial Intelligence

Reinforcement Learning
AIMA Chapter 17+22

Slides by Michael Hahsler
with figures from the AIMA textbook.

This work is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License. Online Mat

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Remember Chapter 16:
Making Simple Decisions

For a decision that we make frequently and making it once does
not affect the future decisions (episodic environment), we can
use the Principle of Maximum Expected Utility (MEU).
Given the expected utility of an action

𝐸𝐸𝐸𝐸 𝑎𝑎 = �
𝑠𝑠𝑠

�
𝑠𝑠

𝑃𝑃 𝑠𝑠 𝑃𝑃(𝑠𝑠′|𝑠𝑠, 𝑎𝑎)𝑈𝑈(𝑠𝑠′)

choose action that maximizes the expected utility:

𝑎𝑎∗ = argmax𝑎𝑎 𝐸𝐸𝐸𝐸(𝑎𝑎)

Now we will talk about sequential decision making.

ActionCurrent
state 𝒔𝒔

Future
state 𝒔𝒔𝒔

Action 𝑎𝑎 𝑼𝑼(𝒔𝒔𝒔)

Making Complex Decisions:
Sequential Decision Making

AIMA Chapter 17

Sequential Decision Problems

• Utility-based agent: The agent’s utility depends on a sequence of decisions that depend on each
other.

• Sequential decision problems incorporate utilities (called reward), uncertainty, and sensing.

Environment
𝒔𝒔𝒕𝒕 → 𝒔𝒔𝒕𝒕+𝟏𝟏

Agent

Action
𝑎𝑎𝑡𝑡

Observation
𝑜𝑜𝑡𝑡+1

Reward
𝑟𝑟𝑡𝑡+1

Sequence: (𝑜𝑜0, 𝑟𝑟0),𝑎𝑎0, (𝑜𝑜1, 𝑟𝑟1),𝑎𝑎1, (𝑜𝑜2, 𝑟𝑟2),𝑎𝑎2, …

Goal: Observations and rewards depend on the
state of the system and the agent wants to
maximize the expected discounted reward:

𝑈𝑈 = 𝔼𝔼 �
𝑡𝑡=0

𝑇𝑇

𝛾𝛾𝑡𝑡𝑅𝑅𝑡𝑡

𝛾𝛾 … discounting factor
𝑇𝑇 … time horizon may be infinity

Current
state 𝒔𝒔𝟎𝟎

𝒔𝒔𝟏𝟏
𝑎𝑎0

𝒔𝒔𝑻𝑻−𝟏𝟏 𝒔𝒔𝑻𝑻

𝑼𝑼(𝒔𝒔𝑻𝑻)𝑈𝑈(𝑠𝑠𝑻𝑻−1)𝑼𝑼(𝒔𝒔𝟏𝟏) …
𝑎𝑎1 𝑎𝑎𝑇𝑇−1

𝑠𝑠0 𝑠𝑠1 𝑠𝑠2

Definition: Markov Decision Process (MDP)
MDPs are sequential decision problems with

• a fully observable, stochastic, and known environment;
• a Markovian transition model (i.e., future states do not depend on past states

give the current state);
• additive rewards.

MDPs are discrete-time stochastic control processes defines by:
• a finite set of states 𝑆𝑆 = {𝑠𝑠0, 𝑠𝑠1, 𝑠𝑠2, … } (initial state 𝑠𝑠0)
• a set of available actions 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑠𝑠) in each state 𝑠𝑠
• a transition model 𝑃𝑃(𝑠𝑠′ | 𝑠𝑠, 𝑎𝑎) where 𝑎𝑎 ∈ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑠𝑠)
• a reward function 𝑟𝑟(𝑠𝑠) where the reward depends on the current state (often
𝑟𝑟(𝑠𝑠, 𝑎𝑎, 𝑠𝑠’) is used to make modelling easier)

Time horizon
• Infinite horizon: non-episodic (continuous) tasks with no terminal state.
• Finite horizon: episodic tasks. Episode ends after a number of periods or when

a terminal state is reached. Episodes contain a sequence of several actions that
affect each other.

𝑠𝑠0 𝑠𝑠1

𝑠𝑠2

𝑎𝑎11
10

𝑎𝑎2
𝑎𝑎1

𝑎𝑎2

.5

.5

1
10-5

100

𝑎𝑎1,𝑎𝑎2

0

𝑷𝑷 𝒔𝒔𝒔 𝒔𝒔,𝒂𝒂)
𝒓𝒓(𝒔𝒔,𝒂𝒂, 𝒔𝒔’)

This is different from the previous
definition of an episodic environment!

Example: 4x3 Grid World
Since we know the
complete MDP model, we
can solve this as a
planning problem.
For each square: specify
what direction should we
try to go to maximize the
expected total utility.
This is called a policy
written as the function

𝜋𝜋: 𝑆𝑆 → 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑆𝑆)

-0.04-0.04-0.04

-0.04 -0.04

-0.04
-0.04 -0.04 -0.04

Policy
𝑠𝑠 Action 𝝅𝝅(𝐬𝐬)

(1,1) Up

… …

… …

Rewards 𝑟𝑟(𝑠𝑠)
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑠𝑠)

States 𝑆𝑆 are
squares.

START is the
initial state

Stochastic
transition model
𝑃𝑃(𝑠𝑠𝑠 | 𝑠𝑠, 𝑎𝑎)

Value Function
• A policy 𝝅𝝅 = 𝜋𝜋 𝑠𝑠0 ,𝜋𝜋 𝑠𝑠1 , … defines for each state which action to take.
• The expected utility of being in state 𝑠𝑠 under policy 𝜋𝜋 (i.e., following the policy starting

from 𝑠𝑠) can be calculated as the sum:

𝑈𝑈𝜋𝜋 𝑠𝑠 = 𝔼𝔼𝜋𝜋 �
𝑡𝑡=0

∞

𝛾𝛾𝑡𝑡𝑟𝑟(𝑠𝑠𝑡𝑡) |𝑠𝑠0 = 𝑠𝑠

• 𝑈𝑈𝜋𝜋(𝑠𝑠) (often also written as 𝑉𝑉(𝑠𝑠)) is called the value function. It is often stored as a
table.

𝛾𝛾 is a discounting factor
to give more weight to
immediate rewards.

𝐸𝐸𝜋𝜋 is the expectation
over sequences that can
be created by following
𝜋𝜋.

Value Function
𝑠𝑠 Value U(𝐬𝐬)

(1,1) 0.7453

(1,2) 0.8016

… …

Value Function

Planning: Finding the Optimal Policy
• The goal of solving an MDP is to find an optimal policy 𝝅𝝅 that maximizes the expected future utility for each

state

 𝜋𝜋∗ 𝑠𝑠 = argmax
𝜋𝜋

𝑈𝑈𝜋𝜋 𝑠𝑠 for all 𝑠𝑠 ∈ S

• Issue: 𝜋𝜋∗ depends on 𝑈𝑈𝜋𝜋 and vice versa!

• The problem can be formulated recursively using the Bellman equation which holds for the optimal value
function 𝑈𝑈 (“Bellman optimality condition”):

𝑈𝑈𝜋𝜋∗ 𝑠𝑠 = 𝑟𝑟 𝑠𝑠 + 𝛾𝛾max
𝑎𝑎∈𝐴𝐴

�
𝑠𝑠′

𝑃𝑃 𝑠𝑠′ 𝑠𝑠, 𝑎𝑎 𝑈𝑈𝜋𝜋∗ 𝑠𝑠′

𝜋𝜋∗ uses the
best action

ExpectationImmediate
Reward

Utility of the next state

Solution: 4x3 Grid World
Optimal action in each state

(policy 𝝅𝝅∗)
Value of being in a state 𝑼𝑼𝝅𝝅∗(𝒔𝒔)

(given that we will follow 𝝅𝝅∗)

𝛾𝛾 = 1

Greedy policy:
Always pick the action

leading to the state with
the highest expected utility.

It is optimal to walk away from the +1 square!

How to we find the optimal value function/optimal policy?

Policy Iteration Value Iteration

Q-Function
• 𝑄𝑄(𝑠𝑠,𝑎𝑎) is called the state-action value function. It gives the

expected utility of taking action 𝑎𝑎 in state 𝑠𝑠 and then following the
policy.

𝑄𝑄 𝑠𝑠,𝑎𝑎 = 𝑟𝑟 𝑠𝑠 + 𝛾𝛾�
𝑠𝑠𝑠

𝑃𝑃 𝑠𝑠′ 𝑠𝑠, 𝑎𝑎 [𝑈𝑈(𝑠𝑠′)]

• The Relationship with the state value function: 𝑈𝑈 𝑠𝑠 = max
𝑎𝑎

𝑄𝑄 𝑠𝑠,𝑎𝑎
• The Q-function lets us compare the value of taking an action is a

given state and is often used for convenience in algorithms.

Immediate
Reward

Expected utility of the
next state Q-Table

𝑠𝑠 𝑎𝑎 𝑄𝑄(𝑠𝑠,𝑎𝑎)

(1,1) Up 0.7453

(1,1) Right 0.6709

(1,1) Down 0.7003

(1,1) Left 0.7109

… … …

Value Function

Value Iteration: Estimate the Optimal Value Function 𝑈𝑈𝜋𝜋∗

Algorithm: Start with a 𝑈𝑈 vector of 0 for all states and then update (Bellman update) the vector iteratively
until it converges to the unique optimal solution 𝑈𝑈𝜋𝜋∗.

Update with the value of
the best action in state s.

𝑈𝑈 converges to 𝑈𝑈𝜋𝜋∗
and we can extract 𝜋𝜋∗

Uses a proxy for policy loss
𝑼𝑼𝝅𝝅 − 𝑼𝑼 ∞ as the stopping criterion

𝑈𝑈𝜋𝜋∗𝑈𝑈 𝑈𝑈𝑈

Bellman update

Extract
 greedy 𝜋𝜋∗

Policy Iteration: Find the Optimal Policy 𝜋𝜋∗

𝜋𝜋 converges to 𝜋𝜋∗
(and 𝑈𝑈 converges to 𝑈𝑈𝜋𝜋∗)

Calculate U given current policy
(either solve an LP or value
iteration with fixed policy)

Greedy policy
Improvement

Policy iteration tries to directly find the optimal policy by iterating policy evaluation and improvement.

𝑈𝑈𝜋𝜋∗

𝑈𝑈

𝜋𝜋∗

𝜋𝜋

Playing a Game as a Sequential
Decision Problem: Tic-Tac-Toe
• Definitions from the Chapter 5 on Games for a goal-based agent:

• We can set up an MDP to find the optimal policy 𝜋𝜋∗ 𝑠𝑠 , but it will be hard to solve since:
• There are many states, so the table U s has many entries.
• 𝑃𝑃 𝑠𝑠′ 𝑠𝑠, 𝑎𝑎 depends on the other player so it would need to be learned. The table is also very large.
• All the reward is delayed. Immediate regards are always 0 until the end of the game.

• This makes learning hard! A solution is model-free reinforcement learning.

𝑠𝑠0 Empty board.
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑠𝑠) Play empty squares.
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑠𝑠,𝑎𝑎) Symbol (x/o) is placed on empty square.
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑠𝑠) Did a player win or is the game a draw?
𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈(𝑠𝑠) +1 if x wins, -1 if o wins and 0 for a draw.
 Utility is only defined for terminal states. Reward function 𝑟𝑟(𝑠𝑠)

Stochastic transition model 𝑃𝑃 𝑠𝑠′ 𝑠𝑠, 𝑎𝑎

Reinforcement Learning
AIMA Chapter 22

Reinforcement Learning (RL)

• RL assumes that the problem can be modeled as an MDP.
• However, we do not know the transition or the reward model. This

means we have an unknown environment.
• We cannot use offline planning in unknown environments. The agent

needs to interact with the environment (try actions) and use the
reward signal to update its estimate of the utility of states and
actions. This is a learning process where the reward provides positive
reinforcement.

• A popular algorithm is Q-Learning which tries to learn the state-action
value function of important states.

Q-Learning
Q-Learning learns the state-action value function as a
table from interactions with the environment.

𝑓𝑓 is the exploration function and decides on the next action. As
N increases it can exploit good actions more.

Make 𝑄𝑄 𝑠𝑠, 𝑎𝑎 a little more similar to the received
reward + the best Q-value of the successor state.

New episode
has no s. Learning rate

Q-Table

𝑠𝑠 𝑎𝑎 𝑄𝑄(𝑠𝑠, 𝑎𝑎)

Value Function Approximation
• 𝑈𝑈 (or 𝑄𝑄) tables needs to store and estimate one entry for each state (state/action combination).
• Issues and solutions

• Too many entries to store → lossy compression
• Many combinations are rarely seen → generalize to unseen entries

• Idea: Estimate the state value by learning an approximation function �𝑈𝑈 𝑠𝑠 = 𝑔𝑔𝜃𝜃 𝑠𝑠 based on
features of 𝑠𝑠.

• Example: 4x3 Grid World with a linear combination of state features (𝑥𝑥,𝑦𝑦) and learn 𝜽𝜽 from
observed data.

Value function 𝑈𝑈(𝑠𝑠)

Learn 𝜽𝜽 from observed
interactions with the

environment to
approximate 𝑈𝑈(𝑠𝑠)

�𝑈𝑈𝜃𝜃 𝑥𝑥,𝑦𝑦 = 𝜃𝜃0 + 𝜃𝜃1𝑥𝑥 + 𝜃𝜃2𝑦𝑦

𝜽𝜽 can be updated iteratively after
each new observed utility using
gradient descent.

𝑥𝑥

𝑦𝑦

Traditional Q-Learning
𝑠𝑠 𝑎𝑎 𝑄𝑄(𝑠𝑠,𝑎𝑎)
1 1 0.7

1 2 0.3

… … …

Deep Q-Learning

Q-Table

𝑠𝑠 𝑄𝑄(𝑠𝑠, 𝑎𝑎)

Deep Q-Network
(DQN)

𝑠𝑠 𝑄𝑄(𝑠𝑠, 𝑎𝑎)

𝑆𝑆 𝐴𝐴

Target networks: It turns out that the Q-Network is unstable if the
same network is used to estimate 𝑄𝑄(𝑠𝑠, 𝑎𝑎) and also 𝑄𝑄(𝑠𝑠′, 𝑎𝑎′). Deep Q-
Learning uses a second target network for 𝑄𝑄 𝑠𝑠′, 𝑎𝑎′ that is updated
with the prediction network every 𝐶𝐶 steps.

Experience replay: To reduce instability more, generate actions using
the current network and store the experience 𝑠𝑠, 𝑎𝑎, 𝑟𝑟, 𝑠𝑠′ in a table.
Update the model parameters by sampling from the table.

Loss function: squared difference between prediction and target.

target prediction

Volodymyr Mni et al., Playing Atari with Deep Reinforcement Learning, NIPS Deep Learning Workshop 2013.

https://doi.org/10.48550/arXiv.1312.5602

Summary

• Agents can learn the value of being in a state from
reward signals.

• Rewards can be delayed (e.g., at the end of a game).

• Not being able to fully observe the state makes the
problem more difficult (POMDP).

• Unknown transition models lead to the need of
exploration by trying actions (model free methods like
Q-Learning).

• All these problems are computationally very expensive
and often can only be solved by approximation. State
of the art is to use deep artificial neural networks for
function approximation.

	CS 5/7320 �Artificial Intelligence��Reinforcement Learning�AIMA Chapter 17+22
	Remember Chapter 16: �Making Simple Decisions
	Making Complex Decisions:�Sequential Decision Making
	Sequential Decision Problems
	Definition: Markov Decision Process (MDP)
	Example: 4x3 Grid World
	Value Function
	Planning: Finding the Optimal Policy
	Solution: 4x3 Grid World
	Q-Function
	Value Iteration: Estimate the Optimal Value Function 𝑈 𝜋 ∗
	Policy Iteration: Find the Optimal Policy 𝜋 ∗
	Playing a Game as a Sequential Decision Problem: Tic-Tac-Toe
	Reinforcement Learning
	Reinforcement Learning (RL)
	Q-Learning
	Value Function Approximation
	Deep Q-Learning
	Summary

