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Remember Chapter 16: 
Making Simple Decisions

For a decision that we make frequently and making it once does 
not affect the future decisions (episodic environment), we can 
use the Principle of Maximum Expected Utility (MEU).
Given the expected utility of an action

𝐸𝐸𝐸𝐸 𝑎𝑎 = �
𝑠𝑠𝑠

�
𝑠𝑠

𝑃𝑃 𝑠𝑠  𝑃𝑃(𝑠𝑠′|𝑠𝑠, 𝑎𝑎)𝑈𝑈(𝑠𝑠′)

choose action that maximizes the expected utility:

𝑎𝑎∗ = argmax𝑎𝑎 𝐸𝐸𝐸𝐸(𝑎𝑎)

Now we will talk about sequential decision making.

ActionCurrent
state 𝒔𝒔

Future 
state 𝒔𝒔𝒔

Action 𝑎𝑎 𝑼𝑼(𝒔𝒔𝒔)



Making Complex Decisions:
Sequential Decision Making

AIMA Chapter 17



Sequential Decision Problems

• Utility-based agent: The agent’s utility depends on a sequence of decisions that depend on each 
other. 

• Sequential decision problems incorporate utilities (called reward), uncertainty, and sensing.

Environment
𝒔𝒔𝒕𝒕 → 𝒔𝒔𝒕𝒕+𝟏𝟏

Agent

Action 
𝑎𝑎𝑡𝑡 

Observation 
𝑜𝑜𝑡𝑡+1

 

Reward 
𝑟𝑟𝑡𝑡+1

 

Sequence: (𝑜𝑜0, 𝑟𝑟0),𝑎𝑎0, (𝑜𝑜1, 𝑟𝑟1),𝑎𝑎1, (𝑜𝑜2, 𝑟𝑟2),𝑎𝑎2, …

Goal: Observations and rewards depend on the 
state of the system and the agent wants to 
maximize the expected discounted reward: 

𝑈𝑈 = 𝔼𝔼 �
𝑡𝑡=0

𝑇𝑇

𝛾𝛾𝑡𝑡𝑅𝑅𝑡𝑡

𝛾𝛾 … discounting factor
𝑇𝑇 … time horizon may be infinity

Current
state 𝒔𝒔𝟎𝟎

𝒔𝒔𝟏𝟏
𝑎𝑎0

𝒔𝒔𝑻𝑻−𝟏𝟏 𝒔𝒔𝑻𝑻

𝑼𝑼(𝒔𝒔𝑻𝑻)𝑈𝑈(𝑠𝑠𝑻𝑻−1)𝑼𝑼(𝒔𝒔𝟏𝟏) …
𝑎𝑎1 𝑎𝑎𝑇𝑇−1

𝑠𝑠0 𝑠𝑠1 𝑠𝑠2



Definition: Markov Decision Process (MDP)
MDPs are sequential decision problems with

• a fully observable, stochastic, and known environment;
• a Markovian transition model (i.e., future states do not depend on past states 

give the current state);
• additive rewards.

MDPs are discrete-time stochastic control processes defines by:
• a finite set of states 𝑆𝑆 = {𝑠𝑠0, 𝑠𝑠1, 𝑠𝑠2, … } (initial state 𝑠𝑠0) 
• a set of available actions 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑠𝑠) in each state 𝑠𝑠
• a transition model 𝑃𝑃(𝑠𝑠′ | 𝑠𝑠, 𝑎𝑎) where 𝑎𝑎 ∈ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑠𝑠)
• a reward function 𝑟𝑟(𝑠𝑠) where the reward depends on the current state (often 
𝑟𝑟(𝑠𝑠, 𝑎𝑎, 𝑠𝑠’) is used to make modelling easier)

Time horizon
• Infinite horizon: non-episodic (continuous) tasks with no terminal state.
• Finite horizon: episodic tasks. Episode ends after a number of periods or when 

a terminal state is reached. Episodes contain a sequence of several actions that 
affect each other.

𝑠𝑠0 𝑠𝑠1

𝑠𝑠2

𝑎𝑎11
10

𝑎𝑎2
𝑎𝑎1

𝑎𝑎2

.5

.5

1
10-5

100

𝑎𝑎1,𝑎𝑎2

0

𝑷𝑷 𝒔𝒔𝒔 𝒔𝒔,𝒂𝒂)
𝒓𝒓(𝒔𝒔,𝒂𝒂, 𝒔𝒔’)

This is different from the previous 
definition of an episodic environment!



Example: 4x3 Grid World
Since we know the 
complete MDP model, we 
can solve this as a 
planning problem.  
For each square: specify 
what direction should we 
try to go to maximize the 
expected total utility.
This is called a policy 
written as the function

𝜋𝜋: 𝑆𝑆 → 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑆𝑆)

-0.04-0.04-0.04

-0.04 -0.04

-0.04
-0.04 -0.04 -0.04

Policy
𝑠𝑠 Action 𝝅𝝅(𝐬𝐬)

(1,1) Up

… …

… …

Rewards 𝑟𝑟(𝑠𝑠)
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑠𝑠) 

States 𝑆𝑆 are 
squares. 

START is the 
initial state

Stochastic 
transition model
𝑃𝑃(𝑠𝑠𝑠 | 𝑠𝑠, 𝑎𝑎) 



Value Function
• A policy 𝝅𝝅 = 𝜋𝜋 𝑠𝑠0 ,𝜋𝜋 𝑠𝑠1 , …  defines for each state which action to take.
• The expected utility of being in state 𝑠𝑠 under policy 𝜋𝜋 (i.e., following the policy starting 

from 𝑠𝑠) can be calculated as the sum:

𝑈𝑈𝜋𝜋 𝑠𝑠 = 𝔼𝔼𝜋𝜋 �
𝑡𝑡=0

∞

𝛾𝛾𝑡𝑡𝑟𝑟(𝑠𝑠𝑡𝑡) |𝑠𝑠0 = 𝑠𝑠

• 𝑈𝑈𝜋𝜋(𝑠𝑠) (often also written as 𝑉𝑉(𝑠𝑠)) is called the value function. It is often stored as  a 
table.

𝛾𝛾 is a discounting factor 
to give more weight to 
immediate rewards.

𝐸𝐸𝜋𝜋 is the expectation 
over sequences that can 
be created by following 
𝜋𝜋.

Value Function
𝑠𝑠 Value U(𝐬𝐬)

(1,1) 0.7453

(1,2) 0.8016

… …

Value Function



Planning: Finding the Optimal Policy
• The goal of solving an MDP is to find an optimal policy 𝝅𝝅 that maximizes the expected future utility for each 

state

   𝜋𝜋∗ 𝑠𝑠 = argmax
𝜋𝜋

𝑈𝑈𝜋𝜋 𝑠𝑠      for all 𝑠𝑠 ∈ S 

• Issue: 𝜋𝜋∗ depends on 𝑈𝑈𝜋𝜋 and vice versa!

• The problem can be formulated recursively using the Bellman equation which holds for the optimal value 
function 𝑈𝑈 (“Bellman optimality condition”):  

𝑈𝑈𝜋𝜋∗ 𝑠𝑠 = 𝑟𝑟 𝑠𝑠 + 𝛾𝛾max
𝑎𝑎∈𝐴𝐴

�
𝑠𝑠′

𝑃𝑃 𝑠𝑠′ 𝑠𝑠, 𝑎𝑎  𝑈𝑈𝜋𝜋∗ 𝑠𝑠′

𝜋𝜋∗ uses the 
best action

ExpectationImmediate 
Reward

Utility of the next state



Solution: 4x3 Grid World 
Optimal action in each state

(policy 𝝅𝝅∗)
Value of being in a state 𝑼𝑼𝝅𝝅∗(𝒔𝒔) 

(given that we will follow 𝝅𝝅∗)

𝛾𝛾 = 1

Greedy policy:
Always pick the action 

leading to the state with 
the highest expected utility.

It is optimal to walk away from the +1 square!

How to we find the optimal value function/optimal policy?

Policy Iteration Value Iteration



Q-Function
• 𝑄𝑄(𝑠𝑠,𝑎𝑎) is called the state-action value function. It gives the 

expected utility of taking action 𝑎𝑎 in state 𝑠𝑠 and then following the 
policy.

𝑄𝑄 𝑠𝑠,𝑎𝑎 = 𝑟𝑟 𝑠𝑠 + 𝛾𝛾�
𝑠𝑠𝑠

𝑃𝑃 𝑠𝑠′ 𝑠𝑠, 𝑎𝑎 [𝑈𝑈(𝑠𝑠′)]

• The Relationship with the state value function: 𝑈𝑈 𝑠𝑠 = max
𝑎𝑎

𝑄𝑄 𝑠𝑠,𝑎𝑎
• The Q-function lets us compare the value of taking an action is a 

given state and is often used for convenience in algorithms.

Immediate 
Reward

Expected utility of the 
next state Q-Table

𝑠𝑠 𝑎𝑎 𝑄𝑄(𝑠𝑠,𝑎𝑎)

(1,1) Up 0.7453

(1,1) Right 0.6709

(1,1) Down 0.7003

(1,1) Left 0.7109

… … …

Value Function



Value Iteration: Estimate the Optimal Value Function 𝑈𝑈𝜋𝜋∗

Algorithm: Start with a 𝑈𝑈 vector of 0 for all states and then update (Bellman update) the vector iteratively 
until it converges to the unique optimal solution 𝑈𝑈𝜋𝜋∗.

Update with the value of 
the best action in state s.

𝑈𝑈 converges to 𝑈𝑈𝜋𝜋∗ 
and we can extract 𝜋𝜋∗

Uses a proxy for policy loss 
𝑼𝑼𝝅𝝅 − 𝑼𝑼 ∞ as the stopping criterion 

𝑈𝑈𝜋𝜋∗𝑈𝑈 𝑈𝑈𝑈

Bellman update

Extract
 greedy 𝜋𝜋∗ 



Policy Iteration: Find the Optimal Policy 𝜋𝜋∗

𝜋𝜋 converges to 𝜋𝜋∗
(and 𝑈𝑈 converges to 𝑈𝑈𝜋𝜋∗)

Calculate U given current policy 
(either solve an LP or value 
iteration with fixed policy)

Greedy policy 
Improvement

Policy iteration tries to directly find the optimal policy by iterating policy evaluation and improvement.

𝑈𝑈𝜋𝜋∗

𝑈𝑈

𝜋𝜋∗

𝜋𝜋



Playing a Game as a Sequential 
Decision Problem: Tic-Tac-Toe
• Definitions from the Chapter 5 on Games for a goal-based agent: 

• We can set up an MDP to find the optimal policy 𝜋𝜋∗ 𝑠𝑠 , but it will be hard to solve since:
• There are many states, so the table U s  has many entries.
• 𝑃𝑃 𝑠𝑠′ 𝑠𝑠, 𝑎𝑎  depends on the other player so it would need to be learned. The table is also very large.
• All the reward is delayed. Immediate regards are always 0 until the end of the game. 

• This makes learning hard! A solution is model-free reinforcement learning.

𝑠𝑠0  Empty board.
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑠𝑠) Play empty squares.
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑠𝑠,𝑎𝑎) Symbol (x/o) is placed on empty square.
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑠𝑠)  Did a player win or is the game a draw?
𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈(𝑠𝑠) +1 if x wins, -1 if o wins and 0 for a draw.
  Utility is only defined for terminal states. Reward function 𝑟𝑟(𝑠𝑠)

Stochastic transition model 𝑃𝑃 𝑠𝑠′ 𝑠𝑠, 𝑎𝑎



Reinforcement Learning
AIMA Chapter 22



Reinforcement Learning (RL)

• RL assumes that the problem can be modeled as an MDP. 
• However, we do not know the transition or the reward model. This 

means we have an unknown environment.
• We cannot use offline planning in unknown environments. The agent 

needs to interact with the environment (try actions) and use the 
reward signal to update its estimate of the utility of states and 
actions. This is a learning process where the reward provides positive 
reinforcement.

• A popular algorithm is Q-Learning which tries to learn the state-action 
value function of important states.



Q-Learning
Q-Learning learns the state-action value function as a 
table from interactions with the environment. 

𝑓𝑓 is the exploration function and decides on the next action. As 
N increases it can exploit good actions more.

Make 𝑄𝑄 𝑠𝑠, 𝑎𝑎  a little more similar to the received 
reward + the best Q-value of the successor state.

New episode 
has no s. Learning rate

Q-Table

𝑠𝑠 𝑎𝑎 𝑄𝑄(𝑠𝑠, 𝑎𝑎)



Value Function Approximation
• 𝑈𝑈 (or 𝑄𝑄) tables needs to store and estimate one entry for each state (state/action combination). 
• Issues and solutions

• Too many entries to store    → lossy compression
• Many combinations are rarely seen   → generalize to unseen entries

• Idea: Estimate the state value by learning an approximation function �𝑈𝑈 𝑠𝑠 = 𝑔𝑔𝜃𝜃 𝑠𝑠  based on 
features of 𝑠𝑠.

• Example: 4x3 Grid World with a linear combination of state features (𝑥𝑥,𝑦𝑦) and learn 𝜽𝜽 from 
observed data.

Value function 𝑈𝑈(𝑠𝑠)

Learn 𝜽𝜽 from observed 
interactions with the 

environment to 
approximate 𝑈𝑈(𝑠𝑠) 

�𝑈𝑈𝜃𝜃 𝑥𝑥,𝑦𝑦 = 𝜃𝜃0 + 𝜃𝜃1𝑥𝑥 + 𝜃𝜃2𝑦𝑦

𝜽𝜽 can be updated iteratively after 
each new observed utility using 
gradient descent.

𝑥𝑥

𝑦𝑦



Traditional Q-Learning
𝑠𝑠 𝑎𝑎 𝑄𝑄(𝑠𝑠,𝑎𝑎)
1 1 0.7

1 2 0.3

… … …

Deep Q-Learning

Q-Table

𝑠𝑠 𝑄𝑄(𝑠𝑠, 𝑎𝑎)

Deep Q-Network 
(DQN)

𝑠𝑠 𝑄𝑄(𝑠𝑠, 𝑎𝑎)

𝑆𝑆 𝐴𝐴

Target networks: It turns out that the Q-Network is unstable if the 
same network is used to estimate 𝑄𝑄(𝑠𝑠, 𝑎𝑎) and also 𝑄𝑄(𝑠𝑠′, 𝑎𝑎′). Deep Q-
Learning uses a second target network for 𝑄𝑄 𝑠𝑠′, 𝑎𝑎′  that is updated 
with the prediction network every 𝐶𝐶 steps. 

Experience replay:  To reduce instability more, generate actions using 
the current network and store the experience 𝑠𝑠, 𝑎𝑎, 𝑟𝑟, 𝑠𝑠′  in a table. 
Update the model parameters by sampling from the table.

Loss function: squared difference between prediction and target.

target prediction

Volodymyr Mni et al., Playing Atari with Deep Reinforcement Learning, NIPS Deep Learning Workshop 2013.

https://doi.org/10.48550/arXiv.1312.5602


Summary

• Agents can learn the value of being in a state from 
reward signals.

• Rewards can be delayed (e.g., at the end of a game).

• Not being able to fully observe the state makes the 
problem more difficult (POMDP).

• Unknown transition models lead to the need of 
exploration by trying actions (model free methods like 
Q-Learning).

• All these problems are computationally very expensive 
and often can only be solved by approximation. State 
of the art is to use deep artificial neural networks for 
function approximation. 
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