
CS 5/7320
Artificial Intelligence

Solving problems
by searching
AIMA Chapter 3

Slides by Michael Hahsler
based on slides by Svetlana Lazepnik
with figures from the AIMA textbook.

This work is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License.

Online Material

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Contents

What are
search

problems?
Tree search Search

space
Uninformed

search
Informed

search

Search Problems
How do we define a search problem?

What are Search Problems?

• We will consider the problem of designing goal-based agents in
known, fully observable, and deterministic environments.

• Example environment:

Start

Exit

Remember: Planning Agent (Goal-based)
• The agent has the task of reaching a defined goal state.
• The performance measure is typically the cost to reach the goal.
• We will discuss a special type of goal-based agents called planning agents, which

use search algorithms to plan a sequence of actions that lead to the goal.

Maze
Agent’s
location

Map of
the maze

Exit
location

Search
for a plan

𝑎𝑎𝑖𝑖 = argmin𝑎𝑎𝑖𝑖∈A �
𝑡𝑡=𝑖𝑖

𝑇𝑇

𝑐𝑐𝑡𝑡 � 𝑠𝑠𝑇𝑇∈ 𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

Planning for Search Problems
• For now, we consider only a discrete

environment using an atomic state
representation (states are just labeled 1, 2, 3,
…).

• The state space is the set of all possible states of
the environment and some states are marked as
goal states.

• The optimal solution is the sequence of actions
(or equivalently a sequence of states) that gives
the lowest path cost for reaching the goal.

Initial state

Goal
state

z

1

Phases:
1) Search/Planning: the process of looking for the sequence of actions that reaches a

goal state. Requires that the agent knows what happens when it moves!
2) Execution: Once the agent begins executing the search solution in a deterministic,

known environment, it can ignore its percepts (open-loop system).

Definition of a Search Problem

• Initial state: state description
• Actions: set of possible actions 𝐴𝐴
• Transition model: a function that

defines the new state resulting from
performing an action in the current
state

• Goal state: state description
• Path cost: the sum of step costs

Important: The state space is typically too large to be enumerated, or it is
continuous. Therefore, the problem is defined by initial state, actions and the
transition model and not the set of all possible states.

g i

Transitions
Actions: {N, E, S, W}

Discretization grid

Initial state

1

4

a

Goal
state

z

Transition Function and Available Actions
• Definition as an action schema:

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑔𝑔𝑔𝑔 𝑑𝑑𝑑𝑑𝑑𝑑
 PRECOND: no wall in direction 𝑑𝑑𝑑𝑑𝑑𝑑
 EFFECT: change the agent’s location according to 𝑑𝑑𝑑𝑑𝑑𝑑

• Definition as a function:
 𝑓𝑓: 𝑆𝑆 × 𝐴𝐴 → 𝑆𝑆 or 𝑠𝑠′ = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑠𝑠, 𝑎𝑎)

• A graph with states
as vertices and actions
as edges.

• Function implemented
as a table representing
the state space
as a graph.

• Available actions in a state come from the
transition function. E.g.,

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(4) = {𝐸𝐸, 𝑆𝑆, 𝑁𝑁}

𝑠𝑠 𝑎𝑎 𝑠𝑠𝑠

1 S 2

2 N 1

2 S 3

… … …

4 E a

4 S 5

4 N 3

… … …

g i

Transitions
Actions: {N, E, S, W}

Discretization grid

Initial state

1

4 a

Goal state

z

2
3

5

Original Description

Note: Known and deterministic is a property of the transition function!

Example: Romania Vacation

• Initial state: Arad
• Actions: Drive from

one city to another.
• Transition model

and states: If you go
from city A to city B,
you end up in city B.

• Goal state: Bucharest
• Path cost: Sum of

edge costs.

• On vacation in Romania; currently in Arad
• Flight leaves tomorrow from Bucharest

Distance in miles

State Space/Transition model
Defined as a graph

Original Description

Example: Vacuum world

• Initial State: Defined by agent location and dirt location.

• Actions: Left, right, suck

• Transition model: Clean a location or move.
• Goal state: All locations are clean.
• Path cost: E.g., number if actions

Goal states

State Space

There are 8 possible
atomic states of the
system.
Why is the number of
states for n possible
locations 𝑛𝑛 2𝑛𝑛 ?

Example: Sliding-tile Puzzle
• Initial State: A given configuration.

• Actions: Move blank left, right, up, down

• Transition model: Move a tile

• Goal state: Tiles are arranged empty and 1-8 in order

• Path cost: 1 per tile move.

State space size

Each state describes the location of each tile (including the
empty one). ½ of the permutations are unreachable.

• 8-puzzle: 9!/2 = 181,440 states

• 15-puzzle: 16!/2 ≈ 1013 states

• 24-puzzle: 25!/2 ≈ 1025 states

Example: Robot Motion Planning

• Initial State: Current arm position with real-valued coordinates of robot joint
angles.

• Actions: Continuous motions of robot joints.
• Transition model: Movement.
• Goal state: Desired final configuration (e.g., object is grasped).
• Path cost: Time to execute, smoothness of path, etc.

Tree Search

Solving Search Problems

Given a search
problem definition

• Initial state
• Actions
• Transition model
• Goal state
• Path cost

How do we find the optimal
solution (sequence of
actions/states) when
shortest path algorithms for
graphs are too expensive?

Construct a search
tree for the state
space graph so we
can use much
cheaper tree search!

Initial state

Goal states

State space

Issue: Transition Model is a Graph
 and Not a Tree!

Initial state

Goal states

Cycles
Return to the same state

Initial state

Goal states

Non-cycle redundant paths
Multiple paths to get to the same state

Path 1 Path 2

Creating a Search Tree
• Superimpose a “what if” tree of possible actions

and outcomes (states) on the state space graph.
• The Root node represents the initial stare.
• An action child node is reached by an edge

representing an action. The corresponding state
is defined by the transition model.

• Trees cannot have cycles (loops). Cycles in the
search space must be broken to prevent infinite
loops.

• Trees cannot have multiple paths to the same
state. These are called redundant paths.
Removing suboptimal redundant paths improves
search efficiency.

• A path through the tree corresponds to a
sequence of actions (states).

• A solution is a path ending in a node
representing a goal state.

• Nodes vs. states: Each tree node represents a
state of the system. If redundant path cannot be
prevented then state can be represented by
multiple nodes in the tree.

… …

a

f

Root node =
Initial state

Child node

Edge = Action

Node representing
a Goal state

b

d

c

e

Non-cycle
redundant

path leads to
reexploring
the same
subtree

Solution path

Cycle

b

e

…

Differences Between Typical Tree Search and
AI Search

Typical tree search

• Assumes a given tree that fits
in memory.

• Trees have by construction no
cycles or redundant paths.

AI tree/graph search

• The search tree is too large to fit into
memory.

a. Builds parts of the tree from the
initial state using the transition
function representing the graph.

b. Memory management is very
important.

• The search space is typically a very
large and complicated graph.
Memory-efficient cycle checking is
very important to avoid infinite loops
or minimize searching parts of the
search space multiple times.

• Checking redundant paths often
requires too much memory and we
accept searching the same part
multiple times.

Tree Search Algorithm Outline

1. Initialize the frontier (set of unexplored known nodes) using the
starting state/root node.

2. While the frontier is not empty:
a) Choose the next frontier node to expand according to the

search strategy.
b) If the node represents a goal state, return it as the solution.
c) Else expand the node (i.e., apply all possible actions to the

transition model) and add its children nodes representing
the newly reached states to the frontier.

Tree Search Example
Frontier

Transition model

Tree Search Example

1. Expand Arad

Frontier

Transition model

Tree Search Example

Frontier

2. Expand Sibiu

Example of
a cycle

Transition model

We could have
also expanded
Timisoara or
Zerind!

Search Strategies: Properties

• A search strategy is defined by picking the order of node
expansion.

• Strategies are evaluated along the following dimensions:
• Completeness: does it always find a solution if one exists?
• Optimality: does it always find a least-cost solution?
• Time complexity: how long does it take?
• Space complexity: how much memory does it need?

• We will discuss different search strategies and use these
properties to compare them.

Space and Time Complexity

State Space vs. Search Tree Size

State Space vs. Search Tree Size
• Space and time complexity depend on the number of tree nodes searched

(created and visited) till a goal node is found. For a tree with 𝑛𝑛 nodes we
have:

𝑂𝑂(𝑛𝑛)

• Remember: For perfect cycle checking and redundant path elimination, we
have a 1:1 mapping between nodes and states:

Nodes in the search tree = states in the search space
Otherwise, we may have multiple nodes representing a state.

• We have the following options to estimate 𝑛𝑛 for a search problem:
a. Estimate the reachable state space size.
b. Estimate the number of searched tree nodes.

• Estimating the complexity is important to judge:
 How difficult is the problem?
 What algorithm will fit in memory?
 Can we find a solution fast enough?
 Can we find the optimal solution, or do we need to use a heuristic?

State Space Size Estimation
State Space
• Number of different states the agent and

environment can be in.
• Reachable states are defined by the initial

state and the transition model. Only reachable
states are important for search.

Estimation
• Even if the used algorithm represents the state

space using atomic states, we may know the
internal (factored) representation. It can be
used to estimate the problem size.

• The basic rule is to estimate the state space
size for factored state representation with 𝑙𝑙
fluents (variables) as:

 𝑛𝑛 = 𝑋𝑋1 × 𝑋𝑋2 × ⋯ × 𝑋𝑋𝑙𝑙

where ⋅ is the number of possible values.

State representation

𝑥𝑥1
𝑥𝑥2
…

The factored state
consists of variables
called fluents that

represent conditions
that can change over

time.

In how many ways can we
order/arrange n objects?

Python
import math

math.factorial(23)

Factorial: 𝑛𝑛! = 𝑛𝑛 × 𝑛𝑛 − 1 × ⋯ × 2 × 1

Source: Permutations/Combinations Cheat Sheets by Oleksii Trekhleb
https://itnext.io/permutations-combinations-algorithms-cheat-sheet-68c14879aba5

3 × 2 × 1 = 6
2 × 2 = 22 = 4

Reminder: Combinatorics - Permutations

https://itnext.io/permutations-combinations-algorithms-cheat-sheet-68c14879aba5
https://itnext.io/permutations-combinations-algorithms-cheat-sheet-68c14879aba5
https://itnext.io/permutations-combinations-algorithms-cheat-sheet-68c14879aba5
https://itnext.io/permutations-combinations-algorithms-cheat-sheet-68c14879aba5
https://itnext.io/permutations-combinations-algorithms-cheat-sheet-68c14879aba5
https://itnext.io/permutations-combinations-algorithms-cheat-sheet-68c14879aba5
https://itnext.io/permutations-combinations-algorithms-cheat-sheet-68c14879aba5
https://itnext.io/permutations-combinations-algorithms-cheat-sheet-68c14879aba5
https://itnext.io/permutations-combinations-algorithms-cheat-sheet-68c14879aba5
https://itnext.io/permutations-combinations-algorithms-cheat-sheet-68c14879aba5
https://itnext.io/permutations-combinations-algorithms-cheat-sheet-68c14879aba5

Python
import scipy.special

the two give the same
results
scipy.special.binom(10, 5)
scipy.special.comb(10, 5)

Binomial Coefficient: 𝑛𝑛
𝑟𝑟 = 𝐶𝐶 𝑛𝑛, 𝑟𝑟 = 𝑛𝑛𝐶𝐶𝑟𝑟

Read as “n choose r” because it is the number
of ways can we choose 𝑟𝑟 out of 𝑛𝑛 objects?
Special case for 𝑟𝑟 = 2: 𝑛𝑛

2 = 𝑛𝑛(𝑛𝑛−1)
2

Source: Permutations/Combinations Cheat Sheets by Oleksii Trekhleb
https://itnext.io/permutations-combinations-algorithms-cheat-sheet-68c14879aba5

3
2 = 3

Reminder: Combinatorics - Combinations

https://itnext.io/permutations-combinations-algorithms-cheat-sheet-68c14879aba5
https://itnext.io/permutations-combinations-algorithms-cheat-sheet-68c14879aba5
https://itnext.io/permutations-combinations-algorithms-cheat-sheet-68c14879aba5
https://itnext.io/permutations-combinations-algorithms-cheat-sheet-68c14879aba5
https://itnext.io/permutations-combinations-algorithms-cheat-sheet-68c14879aba5
https://itnext.io/permutations-combinations-algorithms-cheat-sheet-68c14879aba5
https://itnext.io/permutations-combinations-algorithms-cheat-sheet-68c14879aba5
https://itnext.io/permutations-combinations-algorithms-cheat-sheet-68c14879aba5
https://itnext.io/permutations-combinations-algorithms-cheat-sheet-68c14879aba5
https://itnext.io/permutations-combinations-algorithms-cheat-sheet-68c14879aba5
https://itnext.io/permutations-combinations-algorithms-cheat-sheet-68c14879aba5

Example: What is the State Space Size?

Dirt
• Permutation: A and B are different rooms, order

does matter!
• With repetition: Dirt can be in both rooms.
• There are 2 options (clean/dirty)

→ 22

Robot location
• Can be in 1 out of 2 rooms.

→ 2

Total: 𝑛𝑛 = 2 × 22= 23 = 8

r … # of rooms
n … options

Maze 8-queens problem 8-puzzle problem Tic-tac-toe

Examples: What is the State Space Size?

Often a rough upper limit is sufficient to determine how hard the search problem is.

Maze 8-queens problem 8-puzzle problem Tic-tac-toe

Examples: What is the State Space Size?

Often a rough upper limit is sufficient to determine how hard the search problem is.

Positions the agent
can be in.

n = Number of
white squares.

Action: Move one queen
at a time

All arrangements with 8
queens on the board.

𝑛𝑛 < 264 ≈ 1.8 × 1019

We only have 8 queens:
𝑛𝑛 = 64

8 ≈ 4.4 × 109

All arrangements
of 9 elements.

𝑛𝑛 ≤ 9!

Half is
unreachable:

𝑛𝑛 =
9!
2 = 181,440

All possible boards.

𝑛𝑛 < 39 = 19,683

Many boards are not
legal (e.g., all x’s)

The actual number can be
obtained by a depth-first
traversal of the game tree.

Estimating the Search Tree Size

• Instead of estimating the state space size, it is often more useful to estimate the number of
searched nodes in the search tree.

• This is especially important when redundant paths are not eliminated, where one state can be
represented by multiple nodes.

• We can base the estimation on the search problem description:
• initial state
• Actions
• transition function.

• Used metrics are:
• 𝑏𝑏: maximum branching factor of the search tree

 max. number of available actions.
• 𝑚𝑚: maximal tree depth

 length of the longest path with loops removed.
• 𝑑𝑑: depth of the optimal solution

 min. length of the path from the initial state to a solution state.

• The number of searched nodes is then a function of 𝑏𝑏, 𝑚𝑚 and 𝑑𝑑.

𝑛𝑛 = 𝑓𝑓 𝑏𝑏, 𝑚𝑚, 𝑑𝑑 ⇒ 𝑂𝑂(𝑓𝑓(𝑏𝑏, 𝑚𝑚, 𝑑𝑑))

Goal
𝑚𝑚 = 3

𝑑𝑑 = 1𝑏𝑏 = 2

A

D F

B C

E G

C GoalE

Example: What is the Search Complexity?

• 𝑏𝑏: maximum branching factor
= max. number of available
actions?

3

• 𝑚𝑚: the number of actions in
longest path? Without loops!

4

• 𝑑𝑑: min. depth of the optimal
solution?

3

State Space with Transition Model

Initial state

Goal states

Make sure it is a tree!

Maze 8-queens problem 8-puzzle problem Tic-tac-toe

Examples: What is the
Search Complexity?
Often a rough upper limit is sufficient to determine how hard the search problem is.

𝑏𝑏 =
𝑚𝑚 =
𝑑𝑑 =

𝑏𝑏: maximum branching factor
𝑚𝑚: max. depth of tree
𝑑𝑑: depth of the optimal solution

Maze 8-queens problem 8-puzzle problem Tic-tac-toe

Examples: What is the
Search Complexity?
Often a rough upper limit is sufficient to determine how hard the search problem is.

𝑏𝑏 = 4 actions

𝑚𝑚 = longest path to the
goal or a dead end
(bounded by 𝑥𝑥 × 𝑦𝑦)

𝑑𝑑 = shortest path to
the goal (bounded by
𝑥𝑥 × 𝑦𝑦)

𝑏𝑏: maximum branching factor
𝑚𝑚: max. depth of tree
𝑑𝑑: depth of the optimal solution

Action: Move one
queen at a time

𝑏𝑏 = 8 × (64 − 8) = 448

𝑚𝑚 = We may have to
try all: 64

8 ≈ 4.4 × 109

𝑑𝑑 = move each queen
in the right spot = 8

𝑏𝑏 = 4 actions to move
the empty tile.

𝑚𝑚 = Try all 𝑂𝑂(9!)

𝑑𝑑 = ??? We need to
solve the problem to
know.

𝑏𝑏 = 9 actions for the
first move.
𝑚𝑚 = 9

𝑑𝑑 = 9 (if both play
optimal)

Things to
Remember
• Time and space complexity of search algorithms

determine if we can implement a tree search
solution!

• We can estimate the complexity by the following
methods:

1. Estimate the state space size using a
factored state representation

2. Estimate the search tree size using
branching factor and tree depth.

• If each note represents exactly one state then
both estimates will be equivalent. We will learn
soon when this is or is not the case.

• We typically calculate an estimate of the actual
size, or we use the Big-O notation if we are
interested in how the problem scales with size.

35

Uninformed Search

Breadth-First Search

Uninformed Search Strategies

The search algorithm/planning agent is not provided with information
about how close a state is to the goal state.

It can only use
• the labels of the atomic states and
• the transition function.

Idea: blindly search, following a simple strategy, until the goal state is
reached.

Search strategies:
• Breadth-first search strategy: BFS and uniform-cost search
• Depth-first search strategy: DFS and Iterative deepening search

Breadth-First Search (BFS)

Expansion rule: Expand shallowest unexpanded node in the frontier
(=FIFO).

Data Structures
• Frontier data structure: holds references to the green nodes (green) and is

implemented as a FIFO queue.
• Reached data structure: holds references to all visited nodes (gray and green) and is

used to prevent visiting nodes more than once (cycle and redundant path checking).
• Builds a complete tree with links between parent and child.

Implementation: Breadth-First Search

39

reached makes sure we do not
visit nodes twice (e.g., in a

cycle or other redundant path).
Fast lookup is important.

Expand adds the next level
below node to the frontier.

Implementation: Expanding the Search Tree

• AI tree search creates the search tree while searching.
• The EXPAND function tries all available actions in the current node

using the transition function (RESULTS).
• It returns a list of child nodes for the frontier.

Yield (generator function) can also be
implemented by returning a list of nodes.

Transition
function

Time and Space Complexity
Breadth-First Search

All paths to the depth of the goal are expanded. The search tree size is
1 + 𝑏𝑏 + 𝑏𝑏2 + … + 𝑏𝑏𝑑𝑑 ⇒ 𝑂𝑂 𝑏𝑏𝑑𝑑

Goalm = 3

d = 1b = 2

A

D F

B C

E G

C Goal

ex
pa

nd
ed

d: depth of the optimal solution
m: max. depth of tree
b: maximum branching factor

E

Properties of Breadth-First Search

• Complete?
Yes

• Optimal?
Yes – if cost is the same per step (action). Otherwise: Use uniform-cost search.

• Time?
Number of nodes created: 𝑂𝑂(𝑏𝑏𝑑𝑑)

• Space?
Stored nodes: 𝑂𝑂(𝑏𝑏𝑑𝑑)

Note:
• In AI, the large space complexity is usually a bigger problem than time!

d: depth of the optimal solution
m: max. depth of tree
b: maximum branching factor

Uniform-cost Search
(= Dijkstra’s Shortest Path Algorithm)
• Expansion rule: Expand node in the frontier with the least path cost from the initial state.
• Implementation: best-first search where the frontier is a priority queue ordered by lower 𝑓𝑓(𝑛𝑛) =

path cost (cost of all actions starting from the initial state).
• Breadth-first search is a special case when all step costs being equal, i.e., each action costs the

same!

• Complete?
Yes, if all step cost is greater than some small positive constant ε > 0

• Optimal?
Yes – nodes expanded in increasing order of path cost

• Time?
Expands all nodes with path cost 𝑐𝑐 ≤ 𝐶𝐶∗ (cost of optimal solution) leading to O(b1+C*/ ε) for the number of

nodes.
Note: This can be greater than BFS’s O(bd): the search can explore long paths consisting of small steps before

exploring shorter paths consisting of larger steps.

• Space?
O(b1+C*/ ε)

See Dijkstra's algorithm on Wikipedia

d: depth of the optimal solution
m: max. depth of tree
b: maximum branching factor

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

Implementation: Best-First Search Strategy

44

This check is added to BFS! It
visits a node again if it can

be reached by a better
(cheaper) path.

The order for expanding the
frontier is determined by
f(n) = path cost from the

initial state to node n.

See BFS for function EXPAND.

Note: This generalizes Breadth-First-Search

Uninformed Search

Depth-First Search

Depth-First
Search (DFS)
• Expansion rule:

Expand deepest
unexpanded node in
the frontier (last
added).

• Frontier: stack (LIFO)
• No reached data

structure: forgets
completely explored
subtrees.

• Needs Cycle
checking: don’t
expand nodes that
are already in the
current path to the
root node.

• Cannot avoid
redundant paths:
Leads to multiple
nodes representing
the same state and
replicated work.

Implementation: DFS
• DFS could be implemented like BFS/Best-first search, just taking the last element from the

frontier (LIFO). However, to reduce the space complexity to 𝑂𝑂(𝑏𝑏𝑏𝑏), no reached data
structure can be used!

• Options:
• Iterative implementation: Build the tree, and abandoned branches are removed from memory.

Cycle checking is only done against the current path. This is similar to Backtracking search.
• Recursive implementation: Cycle checking is an issue because the current path is stored in the

function call stack, which is not accessible to the function. An additional data structure that
contains the nodes in the current path can be used.

Cycles: Prevent cycles by checking
against the current path. We also need
to ensure that the frontier does not
contain the same state more than
once.

Redundant paths: We cannot prevent
other redundant paths.

See BFS for function EXPAND.

DFS uses ℓ = ∞

Memory management: remove nodes
for abandoned branches here!

Time and Space Complexity
Depth-First Search

• Time: 𝑂𝑂 𝑏𝑏𝑚𝑚 – worst case is expanding all paths.
• Space: 𝑂𝑂(𝑏𝑏𝑏𝑏) - if it only stores the frontier nodes and the current path.

A

E

CB

D

m = 3

d = 1

Goal

b = 2

H DFS finds this goal first  Not optimal!

Goal

d: depth of the optimal solution
m: max. depth of tree
b: maximum branching factor

I

A

E

CB

D

H I

Properties of Depth-First Search

• Complete?
• In finite search spaces, cycles are avoided by checking for repeated states

along the path.
• Incomplete in infinite search spaces.

• Optimal?
No – returns the first solution it finds.

• Time?
The worst case is to reach a solution at maximum depth m in the last path:

𝑂𝑂 𝑏𝑏𝑚𝑚

Terrible compared to BFS if 𝑚𝑚 ≫ 𝑑𝑑.

• Space?
𝑂𝑂 𝑏𝑏𝑏𝑏 is linear in max. tree depth 𝒎𝒎 which is very good but only achieved if

no reached data structure and memory management is used!
Cycles can be broken but redundant paths cannot be checked.

d: depth of the optimal solution
m: max. depth of tree
b: maximum branching factor

Iterative Deepening Search (IDS)

Can we
• get DFS’s good memory footprint,
• avoid infinite cycles, and
• preserve BFS’s optimality guaranty?

Use depth-restricted DFS and gradually increase the depth.

1. Check if the root node is the goal.
2. Do a DFS searching for a path of length 1
3. If goal not found, do a DFS searching for a path of length 2
4. If goal not found, do a DFS searching for a path of length 3
5. …

Iterative
Deepening
Search
(IDS)

Implementation: IDS

See BFS for function EXPAND.

Properties of Iterative Deepening Search

• Complete?
Yes

• Optimal?
Yes, if step cost = 1 (like BFS)

• Time?
Consists of rebuilding trees up to 𝑑𝑑 times
𝑑𝑑𝑏𝑏 + (𝑑𝑑 − 1)𝑏𝑏2 + … + 1𝑏𝑏𝑑𝑑 = 𝑂𝑂(𝑏𝑏𝑑𝑑)  Slower than BFS, but the same complexity class!

• Space?
O(bd)  linear space. Even less than DFS since 𝒎𝒎 ≤ 𝒅𝒅. Cycles need to be handled by the

depth-limited DFS implementation.

Note: IDS produces the same result as BFS but trades much better space
complexity for worse run time.

d: depth of the optimal solution
m: max. depth of tree
b: maximum branching factor

This makes IDS/DFS the
workhorse of AI.

Informed Search
Introduction

Informed Search

AI search problems typically have a very large search space. We would like to
improve efficiency by expanding as few nodes as possible.

Idea: The agent can use additional information in the form of “hints” about
what promising states are to explore first. These hints are derived from

• information the agent has (e.g., a map with the goal location marked) or
• percepts coming from a sensor (e.g., a GPS sensor and coordinates of the goal).

Method: The agent uses a heuristic function 𝒉𝒉(𝒏𝒏)
• to rank nodes in the frontier based on the additional information, and
• to select the most promising node in the frontier for expansion using the best-

first search strategy.

Discussed algorithms:
• Greedy best-first search
• A* search

Heuristic Function

• Heuristic function ℎ(𝑛𝑛) estimates the cost of reaching a node representing the
goal state from the currently considered node 𝑛𝑛.

• Examples:

Start state

Goal state

Manhattan distance
Start state

Goal state

Euclidean distance

State for currently
considered node

Heuristic for the Romania Problem

h(n)

Use the map for hints: Estimate the driving distance from Arad to Bucharest using a straight-
line distance on the map.

Greedy Best-First Search Example
Expansion rule: Expand the
node that has the lowest value
of the heuristic function h(n) h(n)=

Greedy Best-First Search Example

Greedy Best-First Search Example

Greedy Best-First Search Example

Total:
 140 + 99 + 211 = 450 miles

Properties of Greedy Best-First Search

• Complete?
Yes – Best-first search if complete in finite spaces.

• Optimal?
No

Total:
 140 + 99 + 211 = 450 miles

Alternative through Rimnicu Vilcea:
 140 + 80 + 97 + 101 = 418 miles

Implementation of Greedy Best-First search

Best-First
Search

Expand the frontier
using

 𝑓𝑓 𝑛𝑛 = ℎ(𝑛𝑛)

Implementation of Greedy Best-First Search

64

The order for expanding the
frontier is determined by

f(n)

See BFS for function EXPAND.

Heuristic 𝒉𝒉(𝒏𝒏) so we expand the node with the lowest estimated cost

Properties of Greedy Best-First Search

• Complete?
Yes – Best-first search if complete in finite spaces.

• Optimal?
No

• Time?
Worst case: O(bm)  like DFS
Best case: O(bm) – If ℎ(𝑛𝑛) is 100% accurate we only expand a

single path.

• Space?
Same as time complexity.

d: depth of the optimal solution
m: max. depth of tree
b: maximum branching factor

Informed Search
A* Search

The Optimality Problem of
Greedy Best-First search

ℎ = 1 is better than ℎ = 2.
Greedy best-first will go this way

and never reconsider!

Greedy best-first search only considers the estimated cost to the goal.

A* Search

• Idea: Take the cost of the path to 𝑛𝑛 called 𝑔𝑔(𝑛𝑛) into account to avoid
expanding paths that are already very expensive.

• The evaluation function 𝑓𝑓(𝑛𝑛) is the estimated total cost of the path
through node 𝑛𝑛 to the goal:

𝑓𝑓(𝑛𝑛) = 𝑔𝑔(𝑛𝑛) + ℎ(𝑛𝑛)
𝑔𝑔(𝑛𝑛): cost so far to reach n (path cost)
ℎ(𝑛𝑛): estimated cost from n to goal (heuristic)

• The agent in the example above will stop at n with 𝑓𝑓 𝑛𝑛 = 3 + 1 = 4 and chose
the path up with a better 𝑓𝑓 𝑛𝑛𝑛 = 1 + 2 = 3.

Note: For greedy best-first search we just used 𝑓𝑓(𝑛𝑛) = ℎ(𝑛𝑛).

𝑔𝑔(𝑛𝑛) = 3
n

f 𝑛𝑛 = 4

n’
f 𝑛𝑛′ = 3

A* Search Example

𝑓𝑓 𝑛𝑛 = 𝑔𝑔(𝑛𝑛) + ℎ(𝑛𝑛) =Expansion rule:
Expand the node with
the smallest f(n)

ℎ(𝑛𝑛)

A* Search Example
𝑓𝑓 𝑛𝑛 = 𝑔𝑔 𝑛𝑛 + ℎ(𝑛𝑛)

ℎ(𝑛𝑛)

A* Search Example
𝑓𝑓 𝑛𝑛 = 𝑔𝑔 𝑛𝑛 + ℎ(𝑛𝑛)

ℎ(𝑛𝑛)

A* Search Example
𝑓𝑓 𝑛𝑛 = 𝑔𝑔 𝑛𝑛 + ℎ(𝑛𝑛)

ℎ(𝑛𝑛)
Reconsiders Rimnicu

Vilcea because Fagaras
may have a shorter total

cost to Bucharest.

A* Search Example
𝑓𝑓 𝑛𝑛 = 𝑔𝑔 𝑛𝑛 + ℎ(𝑛𝑛)

ℎ(𝑛𝑛)

A* Search Example
𝑓𝑓 𝑛𝑛 = 𝑔𝑔 𝑛𝑛 + ℎ(𝑛𝑛)

ℎ(𝑛𝑛)

Source: Wikipedia

BFS vs. A* Search

BFS

A* A*

A* Search expands
fewer nodes than BFS!

https://en.wikipedia.org/wiki/A*_search_algorithm

Implementation of A* Search

76

The order for expanding the
frontier is determined by

𝑓𝑓(𝑛𝑛)

See BFS for function EXPAND.

Path cost to 𝒏𝒏 + heuristic from 𝒏𝒏 to goal = estimate of the total cost
𝒈𝒈 𝒏𝒏 + 𝒉𝒉(𝒏𝒏)

Optimality: Admissible Heuristics

Definition: A heuristic ℎ is admissible if for every node 𝑛𝑛,
ℎ 𝑛𝑛 ≤ ℎ∗(𝑛𝑛), where ℎ∗(𝑛𝑛) is the true cost to reach the goal
state from 𝑛𝑛.
I.e., an admissible heuristic is a lower bound and never
overestimates the true cost to reach the goal.

Example: Straight line distance never overestimates the actual
road distance.

Theorem: If ℎ is admissible, A* is optimal.

Guarantees of A* Search

A* is optimally efficient

No other tree-based search algorithm that employs the same heuristic can
expand fewer nodes and still guarantee the optimal solution.

Proof: Any algorithm that does not expand all nodes with
 𝑓𝑓(𝑛𝑛) < 𝐶𝐶∗ (the lowest cost of going to a goal node) cannot be
optimal. It risks missing the optimal solution.

Properties of A*Search

• Complete?
Yes

• Optimal?
Yes

• Time?
Number of nodes for which 𝑓𝑓(𝑛𝑛) ≤ 𝐶𝐶∗ in the worst case 𝑂𝑂(𝑏𝑏𝑑𝑑)

like BFS.

• Space?
Same as time complexity. This is often too high unless a very

good heuristic is know.

Iterative-Deepening A* Search – IDA*

• Idea: A* search without a reached data structure.
• Remember: Regular IDA is uninformed and increases the cutoff by one after

each iteration.

• IDA* uses the cost 𝑓𝑓 = 𝑔𝑔 + ℎ of a node as the cutoff. In each iteration, the
cost cutoff increases slightly. It is optimal if steps are small and ℎ is
admissible.

• Issues:
• By how much to increase the cutoff in each iteration.
• Rebuilds the tree many times.

• Other memory-bounded variants of A* search:
• Recursive best-first search (RBFS) adds a 𝑓𝑓-limit to the depth-first search behavior

of best-first search.
• Simplified memory-bounded A* (SMA*) performs A* till the memory is full and

then drops the worst (highest 𝑓𝑓) leaf node from memory. It can rebuild the node
later if needed.

Informed Search
Designing Heuristics

Designing Heuristic Functions

Example heuristics for the 8-puzzle:
• ℎ1(𝑛𝑛) = number of misplaced tiles
• ℎ1(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) = 8

• ℎ2(𝑛𝑛) = total Manhattan distance (number of squares from the desired
location of each tile)

• ℎ2(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) = 3 + 1 + 2 + 2 + 2 + 3 + 3 + 2 = 18

Are ℎ1 and ℎ2 admissible?
1 needs to move 3

positions

Heuristics from Relaxed Problems

• A problem with fewer restrictions on the actions is called a relaxed
problem.

• The cost of an optimal solution to a relaxed problem is an admissible
heuristic for the original problem. I.e., the true cost is never smaller.

• What relaxation is used by ℎ1 and ℎ2?
• ℎ1: If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then

ℎ1(𝑛𝑛) gives the shortest solution.
• ℎ2: If the rules are relaxed so that a tile can move to any adjacent square, then

ℎ2(𝑛𝑛) gives the shortest solution.

ℎ1(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) = 8

ℎ2(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)
= 3 + 1 + 2 + 2 + 2 + 3 + 3 + 2
= 18

Heuristics from Relaxed Problems

What relaxations are used in these two cases?

Start state

Goal state

Start state

Goal state

Euclidean distance Manhattan distance

Heuristics from Subproblems

• Let ℎ3(𝑛𝑛) be the cost of getting a subset of tiles
(say, 1,2,3,4) into their correct positions. The final order of the *
tiles does not matter.

• Solutions for subproblems are an admissible heuristic.
• Calculation:

• Very small subproblems are often easy to solve.
• We can precompute and save the exact solution cost for every or many

possible subproblem instances – pattern database.

*
*
*

* *
* * *

Dominance: What Heuristic is Better?

Definition: If ℎ1 and ℎ2 are both admissible heuristics
and ℎ2(𝑛𝑛) ≥ ℎ1(𝑛𝑛) for all 𝑛𝑛, then
ℎ2 dominates ℎ1

Is ℎ1
or ℎ2 better for A* search?

• A* search expands every node with
 𝑓𝑓(𝑛𝑛) < 𝐶𝐶∗  ℎ(𝑛𝑛) < 𝐶𝐶∗ – 𝑔𝑔(𝑛𝑛)

• ℎ2
is never smaller than ℎ1. A* search with ℎ2 will expand

less nodes and is therefore better.

Combining Heuristics

• Suppose we have a collection of admissible
heuristics ℎ1, ℎ2, … , ℎ𝑚𝑚, but none of them
dominates the others.

• Combining them is easy:

ℎ(𝑛𝑛) = max{ℎ1(𝑛𝑛), ℎ2(𝑛𝑛), … , ℎ𝑚𝑚(𝑛𝑛)}

• That is, always pick for each node the heuristic that
is closest to the real cost to the goal ℎ∗(𝑛𝑛).

Example: Effect of Information in Search

Typical search costs for the 8-puzzle

• State space: 9!
2

= 1,811,440 states

• Problem with solution at depth 𝑑𝑑 = 12
 IDS = 3,644,035 nodes
 A*(ℎ1) = 227 nodes
 A*(ℎ2) = 73 nodes

• Solution at depth 𝑑𝑑 = 24
 IDS ≈ 54,000,000,000 nodes
 A*(ℎ1) = 39,135 nodes
 A*(ℎ2) = 1,641 nodes

Contains many
redundant paths which

IDS cannot break!

ℎ1(𝑛𝑛) = number of misplaced tiles
ℎ2(𝑛𝑛) = total Manhattan distance

Satisficing Search: Weighted A* Search

• Often it is sufficient to find a “good enough” solution if it can be found very
quickly or with way less computational resources. I.e., expanding fewer
nodes.

• We could use inadmissible heuristics in A* search (e.g., by multiplying ℎ(𝑛𝑛)
with a factor 𝑊𝑊) that sometimes overestimate the optimal cost to the goal
slightly.

1. It potentially reduces the number of expanded nodes significantly.
2. This will break the algorithm’s optimality guaranty!

f 𝑛𝑛 = 𝑔𝑔 𝑛𝑛 + 𝑊𝑊 × ℎ(𝑛𝑛)

Weighted A* search: 𝒈𝒈 𝒏𝒏 + 𝑾𝑾 × 𝒉𝒉 𝒏𝒏 (𝟏𝟏 < 𝑾𝑾 < ∞)

The presented algorithms are special cases:
A* search: 𝑔𝑔 𝑛𝑛 + ℎ 𝑛𝑛 (𝑊𝑊 = 1)
Uniform cost search/BFS: 𝑔𝑔 𝑛𝑛 (𝑊𝑊 = 0)
Greedy best-first search: ℎ 𝑛𝑛 𝑊𝑊 = ∞

Example of Weighted A* Search

Weighted A* Search
𝑓𝑓(𝑛𝑛) = 𝑔𝑔(𝑛𝑛) + 5 ℎ𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑛𝑛)

Exact A* Search
𝑓𝑓 𝑛𝑛 = 𝑔𝑔(𝑛𝑛) + ℎ𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑛𝑛)

Source and Animation: Wikipedia

Breadth-first Search (BFS)
𝑓𝑓 𝑛𝑛 = # actions to reach n

Reduction in the number of expanded nodes

https://en.wikipedia.org/wiki/A*_search_algorithm

Summary
Planning Agents

Remember: Planning Agent (Goal-based)
• The agent has the task of reaching a defined goal state.
• The performance measure is typically the cost to reach the goal.
• We will discuss a special type of goal-based agents called planning agents, which

use search algorithms to plan a sequence of actions that lead to the goal.

Maze
Agent’s
location

Map of
the maze

Exit
location

Search
for a plan

𝑎𝑎𝑖𝑖 = argmin𝑎𝑎𝑖𝑖∈A �
𝑡𝑡=𝑖𝑖

𝑇𝑇

𝑐𝑐𝑡𝑡 � 𝑠𝑠𝑇𝑇∈ 𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

A Planning Agent: Planning vs. Execution Phase

1. Planning is done by a planning function using search. The result is
a plan.

2. The plan is executed by the agent function, which returns the
planned actions from the plan step-by-step.

Note: The execution agent does not use percepts or the transition function. It blindly follows the plan.
Caution: This only works in an environment with deterministic transitions.

S
S
S
E
…Step 2

2
3
4

Step

1

Current step
(=program counter)

PlanAgent

…

Execution of the plan at step 2 returns action SPlanning function

…

Example: Complete Planning Agent to Solve a Maze

• The event loop calls the agent function for the next action.
• The agent function follows the plan or calls the planning function if there is no plan yet or it

thinks the current plan does not work based on the percepts (replanning).

Environment

Physical
Maze

Map
= Transition function +
initial and goal state

Sensors

Actuators

Plan

Planning
function

Agent
function

Current step
in plan

Physical agent

has an event loop:
• Read sensors
• Call agent

function
• Execute action

in the physical
environment

• Repeat

percepts

next
action

Sensor input

Execute actions
step-by-step in

the physical
environment

State

Summary:
All Search Strategies

Algorithm Complete? Optimal? Time
complexity

Space
complexity

BFS (Breadth-
first search)

Yes If all step
costs are equal 𝑂𝑂(𝑏𝑏𝑑𝑑) 𝑂𝑂(𝑏𝑏𝑑𝑑)

Uniform-cost
Search

Yes Yes Number of nodes with 𝑔𝑔(𝑛𝑛) ≤ 𝐶𝐶∗

DFS
In finite spaces

(cycles checking) No 𝑂𝑂(𝑏𝑏𝑚𝑚) 𝑂𝑂(𝑏𝑏𝑏𝑏)

IDS Yes If all step
costs are equal 𝑂𝑂(𝑏𝑏𝑑𝑑) 𝑂𝑂(𝑏𝑏𝑏𝑏)

Greedy best-
first Search

In finite spaces
(cycles checking) No

Depends on heuristic
Best case: 𝑂𝑂(𝑏𝑏𝑏𝑏)

Worst case: 𝑂𝑂 𝑏𝑏𝑚𝑚

A* Search Yes Yes Number of nodes with
𝑔𝑔(𝑛𝑛) + ℎ(𝑛𝑛) ≤ 𝐶𝐶∗

b: maximum branching factor of the search tree
d: depth of the optimal solution
m: maximum length of any path in the state space
C*: cost of optimal solution

With a good heuristic

N
ee

ds
 c

yc
le

 c
he

ck
in

g
Ca

nn
ot

 a
vo

id
 re

du
nd

an
t p

at
hs

Implementation as Best-First Search
• All discussed search strategies can be implemented using Best-first search.
• Best-first search expands always the node with the minimum value of an

evaluation function 𝒇𝒇(𝒏𝒏).

• Important note: Do not implement DFS/IDS using Best-first search!
You will get poor space complexity from BFS and the disadvantages of DFS
(not optimal and worse time complexity).

Search Strategy Evaluation function 𝒇𝒇(𝒏𝒏)
BFS (Breadth-first search) 𝑔𝑔(𝑛𝑛) (=uniform path cost)
Uniform-cost Search 𝑔𝑔(𝑛𝑛) (=path cost)
DFS/IDS (see note below!) −𝑔𝑔(𝑛𝑛)
Greedy Best-first Search ℎ(𝑛𝑛)
(weighted) A* Search 𝑔𝑔 𝑛𝑛 + 𝑊𝑊 × ℎ(𝑛𝑛)

• Tree search can be used for planning actions
for goal-based agents in known, fully
observable and deterministic environments.

• Issues are:
• The large search space typically does

not fit into memory. We use a
transition function as a compact
representation of the transition
model.

• The search tree is built on the fly, and
we have to deal with cycles, redundant
paths, and memory management.

• DFS/IDS is a memory efficient method used
often in AI for uninformed search.

• Informed search uses heuristics based on
knowledge or percepts to improve search
performance (i.e., A* expand fewer nodes
than BFS).

Conclusion

	CS 5/7320 �Artificial Intelligence��Solving problems by searching�AIMA Chapter 3
	Contents
	Search Problems
	What are Search Problems?
	Remember: Planning Agent (Goal-based)
	Planning for Search Problems
	Definition of a Search Problem
	Transition Function and Available Actions
	Example: Romania Vacation
	Example: Vacuum world
	Example: Sliding-tile Puzzle
	Example: Robot Motion Planning
	Tree Search
	Solving Search Problems
	Issue: Transition Model is a Graph � and Not a Tree!
	Creating a Search Tree
	Differences Between Typical Tree Search and AI Search
	Tree Search Algorithm Outline
	Tree Search Example
	Tree Search Example
	Tree Search Example
	Search Strategies: Properties
	Space and Time Complexity��State Space vs. Search Tree Size
	State Space vs. Search Tree Size
	State Space Size Estimation
	Reminder: Combinatorics - Permutations
	Reminder: Combinatorics - Combinations
	Example: What is the State Space Size?
	Examples: What is the State Space Size?
	Examples: What is the State Space Size?
	Estimating the Search Tree Size
	Example: What is the Search Complexity?
	Examples: What is the �Search Complexity?
	Examples: What is the �Search Complexity?
	Things to Remember
	Uninformed Search
	Uninformed Search Strategies
	Breadth-First Search (BFS)
	Implementation: Breadth-First Search
	Implementation: Expanding the Search Tree
	Time and Space Complexity �Breadth-First Search
	Properties of Breadth-First Search
	Uniform-cost Search �(= Dijkstra’s Shortest Path Algorithm)
	Implementation: Best-First Search Strategy
	Uninformed Search
	Depth-First Search (DFS)
	Implementation: DFS
	Time and Space Complexity�Depth-First Search
	Properties of Depth-First Search
	Iterative Deepening Search (IDS)
	Iterative Deepening Search (IDS)
	Implementation: IDS
	Properties of Iterative Deepening Search
	Informed Search�Introduction
	Informed Search
	Heuristic Function
	Heuristic for the Romania Problem
	Greedy Best-First Search Example
	Greedy Best-First Search Example
	Greedy Best-First Search Example
	Greedy Best-First Search Example
	Properties of Greedy Best-First Search
	Implementation of Greedy Best-First search
	Implementation of Greedy Best-First Search
	Properties of Greedy Best-First Search
	Informed Search�A* Search
	The Optimality Problem of �Greedy Best-First search
	A* Search
	A* Search Example
	A* Search Example
	A* Search Example
	A* Search Example
	A* Search Example
	A* Search Example
	BFS vs. A* Search
	Implementation of A* Search
	Optimality: Admissible Heuristics
	Guarantees of A* Search
	Properties of A*Search
	Iterative-Deepening A* Search – IDA*
	Informed Search�Designing Heuristics
	Designing Heuristic Functions
	Heuristics from Relaxed Problems
	Heuristics from Relaxed Problems
	Heuristics from Subproblems
	Dominance: What Heuristic is Better?
	Combining Heuristics
	Example: Effect of Information in Search
	Satisficing Search: Weighted A* Search
	Example of Weighted A* Search
	Summary �Planning Agents
	Remember: Planning Agent (Goal-based)
	A Planning Agent: Planning vs. Execution Phase
	Example: Complete Planning Agent to Solve a Maze
	Summary: �All Search Strategies
	Implementation as Best-First Search
	Conclusion

