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Search Problems
How do we define a search problem?



What are Search Problems?

• We will consider the problem of designing goal-based agents in 
known, fully observable, and deterministic environments.

• Example environment:

Start

Exit



Remember: Planning Agent (Goal-based)
• The agent has the task of reaching a defined goal state. 
• The performance measure is typically the cost to reach the goal.  
• We will discuss a special type of goal-based agents called planning agents, which 

use search algorithms to plan a sequence of actions that lead to the goal.

Maze
Agent’s 
location

Map of 
the maze

Exit 
location

Search 
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Planning for Search Problems
• For now, we consider only a discrete 

environment using an atomic state 
representation (states are just labeled 1, 2, 3, 
…). 

• The state space is the set of all possible states of 
the environment and some states are marked as 
goal states.

• The optimal solution is the sequence of actions 
(or equivalently a sequence of states) that gives 
the lowest path cost for reaching the goal.

Initial state

Goal 
state

z

1

Phases:
1) Search/Planning: the process of looking for the sequence of actions that reaches a 

goal state. Requires that the agent knows what happens when it moves!
2) Execution: Once the agent begins executing the search solution in a deterministic, 

known environment, it can ignore its percepts (open-loop system).



Definition of a Search Problem

• Initial state: state description
• Actions: set of possible actions 𝐴𝐴
• Transition model: a function that 

defines the new state resulting from 
performing an action in the current 
state

• Goal state: state description
• Path cost: the sum of step costs

Important: The state space is typically too large to be enumerated, or it is 
continuous. Therefore, the problem is defined by initial state, actions and the 
transition model and not the set of all possible states.
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Transition Function and Available Actions
• Definition as an action schema:

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑔𝑔𝑔𝑔 𝑑𝑑𝑑𝑑𝑑𝑑
  PRECOND: no wall in direction 𝑑𝑑𝑑𝑑𝑑𝑑
  EFFECT: change the agent’s location according to 𝑑𝑑𝑑𝑑𝑑𝑑

• Definition as a function:
        𝑓𝑓: 𝑆𝑆 × 𝐴𝐴 → 𝑆𝑆 or 𝑠𝑠′ = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑠𝑠, 𝑎𝑎)

• A graph with states 
as vertices and actions
as edges.

• Function implemented 
as a table representing
the state space 
as a graph.

• Available actions in a state come from the 
transition function. E.g.,

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(4)  =  {𝐸𝐸, 𝑆𝑆, 𝑁𝑁}

𝑠𝑠 𝑎𝑎 𝑠𝑠𝑠

1 S 2

2 N 1

2 S 3

… … …

4 E a

4 S 5

4 N 3

… … …

g i

Transitions
Actions: {N, E, S, W}

Discretization grid

Initial state

1

4 a

Goal state

z

2
3

5

Original Description

Note: Known and deterministic is a property of the transition function!



Example: Romania Vacation

• Initial state: Arad
• Actions: Drive from 

one city to another.
• Transition model 

and states: If you go 
from city A to city B, 
you end up in city B.

• Goal state: Bucharest
• Path cost: Sum of 

edge costs.

• On vacation in Romania; currently in Arad
• Flight leaves tomorrow from Bucharest

Distance in miles

State Space/Transition model
Defined as a graph

Original Description



Example: Vacuum world

• Initial State: Defined by agent location and dirt location.

• Actions: Left, right, suck

• Transition model: Clean a location or move.
• Goal state: All locations are clean.
• Path cost: E.g., number if actions

Goal states

State Space

There are 8 possible 
atomic states of the 
system. 
Why is the number of 
states for n possible 
locations  𝑛𝑛 2𝑛𝑛 ?



Example: Sliding-tile Puzzle
• Initial State: A given configuration.

• Actions: Move blank left, right, up, down 

• Transition model: Move a tile

• Goal state: Tiles are arranged empty and 1-8 in order

• Path cost: 1 per tile move.

State space size

Each state describes the location of each tile (including the 
empty one). ½ of the permutations are unreachable.

• 8-puzzle: 9!/2 = 181,440 states

• 15-puzzle: 16!/2 ≈  1013 states

• 24-puzzle: 25!/2 ≈  1025 states



Example: Robot Motion Planning

• Initial State: Current arm position with real-valued coordinates of robot joint 
angles.

• Actions: Continuous motions of robot joints.
• Transition model: Movement.
• Goal state: Desired final configuration (e.g., object is grasped).
• Path cost: Time to execute, smoothness of path, etc.



Tree Search



Solving Search Problems

Given a search 
problem definition

• Initial state
• Actions
• Transition model
• Goal state
• Path cost

How do we find the optimal 
solution (sequence of 
actions/states) when 
shortest path algorithms for 
graphs are too expensive?

Construct a search 
tree for the state 
space graph so we 
can use much 
cheaper tree search!

Initial state

Goal states

State space



Issue: Transition Model is a Graph 
           and Not a Tree!

Initial state

Goal states

Cycles
Return to the same state 

Initial state

Goal states

Non-cycle redundant paths
Multiple paths to get to the same state

Path 1 Path 2



Creating a Search Tree
• Superimpose a “what if” tree of possible actions 

and outcomes (states) on the state space graph.
• The Root node represents the initial stare.
• An action child node is reached by an edge 

representing an action. The corresponding state 
is defined by the transition model.

• Trees cannot have cycles (loops). Cycles in the 
search space must be broken to prevent infinite 
loops.

• Trees cannot have multiple paths to the same 
state. These are called redundant paths. 
Removing suboptimal redundant paths improves 
search efficiency.

• A path through the tree corresponds to a 
sequence of actions (states).

• A solution is a path ending in a node 
representing a goal state.

• Nodes vs. states: Each tree node represents a 
state of the system. If redundant path cannot be 
prevented then state can be represented by 
multiple nodes in the tree.

… …

a

f

Root node  = 
Initial state

Child node

Edge = Action

Node representing 
a Goal state

b

d

c

e

Non-cycle 
redundant

path leads to 
reexploring 
the same 
subtree

Solution path

Cycle

b

e

…



Differences Between Typical Tree Search and 
AI Search

Typical tree search

• Assumes a given tree that fits 
in memory.

• Trees have by construction no 
cycles or redundant paths.

AI tree/graph search

• The search tree is too large to fit into 
memory. 

a. Builds parts of  the tree from the 
initial state using the transition 
function representing the graph.

b. Memory management is very 
important.

• The search space is typically a very 
large and complicated graph. 
Memory-efficient cycle checking is 
very important to avoid infinite loops 
or minimize searching parts of the 
search space multiple times. 

• Checking redundant paths often 
requires too much memory and we 
accept searching the same part 
multiple times.



Tree Search Algorithm Outline

1. Initialize the frontier (set of unexplored known nodes) using the 
starting state/root node.

2. While the frontier is not empty:
a) Choose the next frontier node to expand according to the 

search strategy.
b) If the node represents a goal state, return it as the solution.
c) Else expand the node (i.e., apply all possible actions to the 

transition model) and add its children nodes representing 
the newly reached states to the frontier.



Tree Search Example
Frontier

Transition model



Tree Search Example

1. Expand Arad

Frontier

Transition model



Tree Search Example

Frontier

2. Expand Sibiu

Example of 
a cycle

Transition model

We could have 
also expanded 
Timisoara or 
Zerind!



Search Strategies: Properties

• A search strategy is defined by picking the order of node 
expansion.

• Strategies are evaluated along the following dimensions:
• Completeness: does it always find a solution if one exists?
• Optimality: does it always find a least-cost solution?
• Time complexity: how long does it take?
• Space complexity: how much memory does it need?

• We will discuss different search strategies and use these 
properties to compare them.



Space and Time Complexity

State Space vs. Search Tree Size



State Space vs. Search Tree Size
• Space and time complexity depend on the number of tree nodes searched 

(created and visited) till a goal node is found. For a tree with 𝑛𝑛 nodes we 
have:

𝑂𝑂(𝑛𝑛)

• Remember: For perfect cycle checking and redundant path elimination, we 
have a 1:1 mapping between nodes and states:

Nodes in the search tree = states in the search space
Otherwise, we may have multiple nodes representing a state.

• We have the following options to estimate 𝑛𝑛 for a search problem:
a. Estimate the reachable state space size.
b. Estimate the number of searched tree nodes.

• Estimating the complexity is important to judge:
 How difficult is the problem?
 What algorithm will fit in memory?
 Can we find a solution fast enough?
 Can we find the optimal solution, or do we need to use a heuristic?



State Space Size Estimation
State Space
• Number of different states the agent and 

environment can be in.
• Reachable states are defined by the initial 

state and the transition model. Only reachable 
states are important for search.

Estimation
• Even if the used algorithm represents the state 

space using atomic states, we may know the 
internal (factored) representation. It can be 
used to estimate the problem size. 

• The basic rule is to estimate the state space 
size for factored state representation with 𝑙𝑙 
fluents (variables) as:

  𝑛𝑛 = 𝑋𝑋1 × 𝑋𝑋2 × ⋯ × 𝑋𝑋𝑙𝑙  

where ⋅  is the number of possible values.

State representation

𝑥𝑥1
𝑥𝑥2
…

The factored state 
consists of variables 
called fluents that 

represent conditions 
that can change over 

time.



In how many ways can we 
order/arrange n objects?

# Python
import math 
  
math.factorial(23)

Factorial: 𝑛𝑛! = 𝑛𝑛 × 𝑛𝑛 − 1 × ⋯ × 2 × 1

Source: Permutations/Combinations Cheat Sheets by Oleksii Trekhleb 
https://itnext.io/permutations-combinations-algorithms-cheat-sheet-68c14879aba5 

3 × 2 × 1 = 6
2 × 2 = 22 = 4

Reminder: Combinatorics - Permutations

https://itnext.io/permutations-combinations-algorithms-cheat-sheet-68c14879aba5
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https://itnext.io/permutations-combinations-algorithms-cheat-sheet-68c14879aba5
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# Python
import scipy.special

# the two give the same 
results 
scipy.special.binom(10, 5)
scipy.special.comb(10, 5)

Binomial Coefficient: 𝑛𝑛
𝑟𝑟 = 𝐶𝐶 𝑛𝑛, 𝑟𝑟 = 𝑛𝑛𝐶𝐶𝑟𝑟

Read as  “n choose r” because it is the number 
of ways can we choose 𝑟𝑟 out of 𝑛𝑛 objects?
Special case for 𝑟𝑟 =  2: 𝑛𝑛

2 = 𝑛𝑛(𝑛𝑛−1)
2

Source: Permutations/Combinations Cheat Sheets by Oleksii Trekhleb 
https://itnext.io/permutations-combinations-algorithms-cheat-sheet-68c14879aba5 

3
2 = 3

Reminder: Combinatorics - Combinations

https://itnext.io/permutations-combinations-algorithms-cheat-sheet-68c14879aba5
https://itnext.io/permutations-combinations-algorithms-cheat-sheet-68c14879aba5
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Example: What is the State Space Size?

Dirt
• Permutation: A and B are different rooms, order 

does matter!
• With repetition: Dirt can be in both rooms.
• There are 2 options (clean/dirty)

→ 22

Robot location
• Can be in 1 out of 2 rooms.

→ 2

Total:    𝑛𝑛 = 2 × 22= 23 = 8

r … # of rooms
n … options



Maze 8-queens problem 8-puzzle problem Tic-tac-toe

Examples: What is the State Space Size?

Often a rough upper limit is sufficient to determine how hard the search problem is.



Maze 8-queens problem 8-puzzle problem Tic-tac-toe

Examples: What is the State Space Size?

Often a rough upper limit is sufficient to determine how hard the search problem is.

Positions the agent 
can be in. 

n = Number of 
white squares.

Action: Move one queen 
at a time

All arrangements with 8 
queens on the board.

𝑛𝑛 < 264 ≈ 1.8 × 1019  

We only have 8 queens:
𝑛𝑛 = 64

8 ≈ 4.4 × 109 

All arrangements 
of 9 elements.

𝑛𝑛 ≤ 9!

Half is 
unreachable:

𝑛𝑛 =
9!
2 = 181,440

All possible boards.

𝑛𝑛 < 39 = 19,683

Many boards are not 
legal (e.g., all x’s)

The actual number can be 
obtained by a depth-first 
traversal of the game tree.



Estimating the Search Tree Size

• Instead of estimating the state space size, it is often more useful to estimate the number of 
searched nodes in the search tree. 

• This is especially important when redundant paths are not eliminated, where one state can be 
represented by multiple nodes.

• We can base the estimation on the search problem description: 
• initial state
• Actions
• transition function.

• Used metrics are:
• 𝑏𝑏: maximum branching factor of the search tree

    max. number of available actions.
• 𝑚𝑚: maximal tree depth

      length of the longest path with loops removed.
• 𝑑𝑑: depth of the optimal solution 

     min. length of the path from the initial state to a solution state.

• The number of searched nodes is then a function of 𝑏𝑏, 𝑚𝑚 and 𝑑𝑑.

𝑛𝑛 = 𝑓𝑓 𝑏𝑏, 𝑚𝑚, 𝑑𝑑 ⇒ 𝑂𝑂(𝑓𝑓(𝑏𝑏, 𝑚𝑚, 𝑑𝑑))

Goal
𝑚𝑚 =  3

𝑑𝑑 =  1𝑏𝑏 =  2

A

D F

B C

E G

C GoalE



Example: What is the Search Complexity?

• 𝑏𝑏: maximum branching factor 
= max. number of available 
actions?

3

• 𝑚𝑚: the number of actions in 
longest path? Without loops!

4

• 𝑑𝑑: min. depth of the optimal 
solution?

3

State Space with Transition Model

Initial state

Goal states

Make sure it is a tree!



Maze 8-queens problem 8-puzzle problem Tic-tac-toe

Examples: What is the 
Search Complexity?
Often a rough upper limit is sufficient to determine how hard the search problem is.

𝑏𝑏 =
𝑚𝑚 =
𝑑𝑑 =

𝑏𝑏: maximum branching factor
𝑚𝑚: max. depth of tree
𝑑𝑑: depth of the optimal solution



Maze 8-queens problem 8-puzzle problem Tic-tac-toe

Examples: What is the 
Search Complexity?
Often a rough upper limit is sufficient to determine how hard the search problem is.

𝑏𝑏 = 4 actions

𝑚𝑚 = longest path to the 
goal or a dead end 
(bounded by 𝑥𝑥 × 𝑦𝑦)

𝑑𝑑 = shortest path to 
the goal (bounded by 
𝑥𝑥 × 𝑦𝑦)

𝑏𝑏: maximum branching factor
𝑚𝑚: max. depth of tree
𝑑𝑑: depth of the optimal solution

Action: Move one 
queen at a time

𝑏𝑏 = 8 × (64 − 8) = 448

𝑚𝑚 = We may have to 
try all: 64

8 ≈ 4.4 × 109

𝑑𝑑 = move each queen 
in the right spot = 8

𝑏𝑏 = 4 actions to move 
the empty tile.

𝑚𝑚 = Try all 𝑂𝑂(9!) 

𝑑𝑑 = ??? We need to 
solve the problem to 
know.

𝑏𝑏 = 9 actions for the 
first move.
𝑚𝑚 = 9

𝑑𝑑 = 9 (if both play 
optimal)



Things to 
Remember
• Time and space complexity of search algorithms 

determine if we can implement a tree search 
solution!

• We can estimate the complexity by the following 
methods:

1. Estimate the state space size using a 
factored state representation

2. Estimate the search tree size using 
branching factor and tree depth.

• If each note represents exactly one state then 
both estimates will be equivalent. We will learn 
soon when this is or is not the case.

• We typically calculate an estimate of the actual 
size, or we use the Big-O notation if we are 
interested in how the problem scales with size.

35



Uninformed Search

Breadth-First Search



Uninformed Search Strategies

The search algorithm/planning agent is not provided with information 
about how close a state is to the goal state. 

It can only use 
• the labels of the atomic states and 
• the transition function.

Idea: blindly search, following a simple strategy, until the goal state is 
reached.

Search strategies:
• Breadth-first search strategy: BFS and uniform-cost search
• Depth-first search strategy: DFS and Iterative deepening search



Breadth-First Search (BFS)

Expansion rule: Expand shallowest unexpanded node in the frontier 
(=FIFO). 

Data Structures
• Frontier data structure: holds references to the green nodes (green) and is 

implemented as a FIFO queue.
• Reached data structure: holds references to all visited nodes (gray and green) and is 

used to prevent visiting nodes more than once (cycle and redundant path checking).
• Builds a complete tree with links between parent and child.



Implementation: Breadth-First Search 

39

reached makes sure we do not 
visit nodes twice (e.g., in a 

cycle or other redundant path). 
Fast lookup is important.

Expand adds the next level 
below node to the frontier.



Implementation: Expanding the Search Tree

• AI tree search creates the search tree while searching.
• The EXPAND function tries all available actions in the current node 

using the transition function (RESULTS). 
• It returns a list of child nodes for the frontier.

Yield (generator function) can also be 
implemented by returning a list of nodes.

Transition 
function



Time and Space Complexity 
Breadth-First Search

All paths to the depth of the goal are expanded. The search tree size is
1 + 𝑏𝑏 + 𝑏𝑏2 +  … + 𝑏𝑏𝑑𝑑 ⇒ 𝑂𝑂 𝑏𝑏𝑑𝑑

Goalm = 3

d = 1b = 2

A

D F

B C

E G

C Goal

ex
pa

nd
ed

d: depth of the optimal solution
m: max. depth of tree
b: maximum branching factor

E



Properties of Breadth-First Search

• Complete? 
Yes

• Optimal? 
Yes – if cost is the same per step (action). Otherwise: Use uniform-cost search. 

• Time? 
Number of nodes created: 𝑂𝑂(𝑏𝑏𝑑𝑑)

• Space? 
Stored nodes: 𝑂𝑂(𝑏𝑏𝑑𝑑)

Note:
• In AI, the large space complexity is usually a bigger problem than time!

d: depth of the optimal solution
m: max. depth of tree
b: maximum branching factor



Uniform-cost Search 
(= Dijkstra’s Shortest Path Algorithm)
• Expansion rule: Expand node in the frontier with the least path cost from the initial state. 
• Implementation: best-first search where the frontier is a priority queue ordered by lower 𝑓𝑓(𝑛𝑛) = 

path cost (cost of all actions starting from the initial state).
• Breadth-first search is a special case when all step costs being equal, i.e., each action costs the 

same!

• Complete? 
Yes, if all step cost is greater than some small positive constant ε > 0

• Optimal?
Yes – nodes expanded in increasing order of path cost

• Time? 
Expands all nodes with path cost 𝑐𝑐 ≤ 𝐶𝐶∗ (cost of optimal solution) leading to O(b1+C*/ ε) for the number of 

nodes.
Note: This can be greater than BFS’s O(bd): the search can explore long paths consisting of small steps before 

exploring shorter paths consisting of larger steps.

• Space? 
O(b1+C*/ ε)

See Dijkstra's algorithm on Wikipedia 

d: depth of the optimal solution
m: max. depth of tree
b: maximum branching factor

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm


Implementation: Best-First Search Strategy

44

This check is added to BFS! It 
visits a node again if it can 

be reached by a better 
(cheaper) path.

The order for expanding the 
frontier is  determined by 
f(n) = path cost from the 

initial state to node n.

See BFS for function EXPAND.

Note: This generalizes Breadth-First-Search



Uninformed Search

Depth-First Search



Depth-First 
Search (DFS)
• Expansion rule: 

Expand deepest 
unexpanded node in 
the frontier (last 
added).

• Frontier: stack (LIFO)
• No reached data 

structure: forgets 
completely explored 
subtrees.

• Needs Cycle 
checking: don’t 
expand nodes that 
are already in the 
current path to the 
root node.

• Cannot avoid 
redundant paths: 
Leads to multiple 
nodes representing 
the same state and 
replicated work. 



Implementation: DFS
• DFS could be implemented like BFS/Best-first search, just taking the last element from the 

frontier (LIFO). However, to reduce the space complexity to 𝑂𝑂(𝑏𝑏𝑏𝑏), no reached data 
structure can be used! 

• Options: 
• Iterative implementation: Build the tree, and abandoned branches are removed from memory. 

Cycle checking is only done against the current path. This is similar to Backtracking search.
• Recursive implementation: Cycle checking is an issue because the current path is stored in the 

function call stack, which is not accessible to the function. An additional data structure that 
contains the nodes in the current path can be used.

Cycles: Prevent cycles by checking 
against the current path. We also need 
to ensure that the frontier does not 
contain the same state more than 
once.

Redundant paths: We cannot prevent 
other redundant paths.

See BFS for function EXPAND.

DFS uses ℓ = ∞

Memory management: remove nodes 
for abandoned branches here!



Time and Space Complexity
Depth-First Search

• Time: 𝑂𝑂 𝑏𝑏𝑚𝑚  – worst case is expanding all paths.
• Space: 𝑂𝑂(𝑏𝑏𝑏𝑏) - if it only stores the frontier nodes and the current path.

A

E

CB

D

m = 3

d = 1

Goal

b = 2

H DFS finds this goal first  Not optimal!

Goal

d: depth of the optimal solution
m: max. depth of tree
b: maximum branching factor

I

A

E

CB

D

H I



Properties of Depth-First Search

• Complete?
• In finite search spaces, cycles are avoided by checking for repeated states 

along the path.
• Incomplete in infinite search spaces.

• Optimal?
No – returns the first solution it finds.

• Time? 
The worst case is to reach a solution at maximum depth m in the last path: 

𝑂𝑂 𝑏𝑏𝑚𝑚

Terrible compared to BFS if 𝑚𝑚 ≫ 𝑑𝑑.

• Space? 
𝑂𝑂 𝑏𝑏𝑏𝑏  is linear in max. tree depth 𝒎𝒎 which is very good but only achieved if 

no reached data structure and memory management is used! 
Cycles can be broken but redundant paths cannot be checked.

d: depth of the optimal solution
m: max. depth of tree
b: maximum branching factor



Iterative Deepening Search (IDS)

Can we
• get DFS’s good memory footprint, 
• avoid infinite cycles, and
• preserve BFS’s optimality guaranty?

Use depth-restricted DFS and gradually increase the depth.

1. Check if the root node is the goal. 
2. Do a DFS searching for a path of length 1
3. If goal not found, do a DFS searching for a path of length 2
4. If goal not found, do a DFS searching for a path of length 3
5. …



Iterative 
Deepening 
Search 
(IDS)



Implementation: IDS

See BFS for function EXPAND.



Properties of Iterative Deepening Search

• Complete?
Yes

• Optimal?
Yes, if step cost = 1 (like BFS)

• Time? 
Consists of rebuilding trees up to 𝑑𝑑 times
𝑑𝑑𝑏𝑏 +  (𝑑𝑑 − 1)𝑏𝑏2 + … + 1𝑏𝑏𝑑𝑑  =  𝑂𝑂(𝑏𝑏𝑑𝑑)   Slower than BFS, but the same complexity class!

• Space?
O(bd)  linear space. Even less than DFS since 𝒎𝒎 ≤ 𝒅𝒅. Cycles need to be handled by the 

depth-limited DFS implementation.

Note: IDS produces the same result as BFS but trades much better space 
complexity for worse run time.

d: depth of the optimal solution
m: max. depth of tree
b: maximum branching factor

This makes IDS/DFS the 
workhorse of AI.



Informed Search
Introduction



Informed Search

AI search problems typically have a very large search space. We would like to 
improve efficiency by expanding as few nodes as possible.

Idea: The agent can use additional information in the form of “hints” about 
what promising states are to explore first. These hints are derived from 

• information the agent has (e.g., a map with the goal location marked) or
• percepts coming from a sensor (e.g., a GPS sensor and coordinates of the goal).

Method: The agent uses a heuristic function 𝒉𝒉(𝒏𝒏) 
• to rank nodes in the frontier based on the additional information, and 
• to select the most promising node in the frontier for expansion using the best-

first search strategy.

Discussed algorithms:
• Greedy best-first search
• A* search



Heuristic Function

• Heuristic function ℎ(𝑛𝑛) estimates the cost of reaching a node representing the 
goal state from the currently considered node 𝑛𝑛.

• Examples:

Start state

Goal state

Manhattan distance
Start state

Goal state

Euclidean distance

State for currently 
considered node



Heuristic for the Romania Problem

h(n)

Use the map for hints: Estimate the driving distance from Arad to Bucharest using a straight-
line distance on the map.



Greedy Best-First Search Example
Expansion rule: Expand the 
node that has the lowest value 
of the heuristic function h(n) h(n)=



Greedy Best-First Search Example



Greedy Best-First Search Example



Greedy Best-First Search Example

Total: 
  140 + 99 + 211 = 450 miles



Properties of Greedy Best-First Search

• Complete?
Yes – Best-first search if complete in finite spaces.

• Optimal? 
No

Total: 
  140 + 99 + 211 = 450 miles

Alternative through Rimnicu Vilcea: 
  140 + 80 + 97 + 101 = 418 miles



Implementation of Greedy Best-First search

Best-First 
Search

Expand the frontier 
using

 𝑓𝑓 𝑛𝑛 = ℎ(𝑛𝑛)



Implementation of Greedy Best-First Search

64

The order for expanding the 
frontier is  determined by 

f(n)

See BFS for function EXPAND.

Heuristic 𝒉𝒉(𝒏𝒏) so we expand the node with the lowest estimated cost



Properties of Greedy Best-First Search

• Complete?
Yes – Best-first search if complete in finite spaces.

• Optimal? 
No

• Time? 
Worst case: O(bm)  like DFS
Best case: O(bm) – If ℎ(𝑛𝑛) is 100% accurate we only expand a 

single path.

• Space?
Same as time complexity.

d: depth of the optimal solution
m: max. depth of tree
b: maximum branching factor



Informed Search
A* Search



The Optimality Problem of 
Greedy Best-First search

ℎ = 1 is better than ℎ = 2. 
Greedy best-first will go this way 

and never reconsider!

Greedy best-first search only considers the estimated cost to the goal.



A* Search

• Idea: Take the cost of the path to 𝑛𝑛 called 𝑔𝑔(𝑛𝑛) into account to avoid 
expanding paths that are already very expensive.

• The evaluation function 𝑓𝑓(𝑛𝑛) is the estimated total cost of the path 
through node 𝑛𝑛 to the goal:

𝑓𝑓(𝑛𝑛)  =  𝑔𝑔(𝑛𝑛)  +  ℎ(𝑛𝑛)
𝑔𝑔(𝑛𝑛): cost so far to reach n (path cost)
ℎ(𝑛𝑛): estimated cost from n to goal (heuristic)

• The agent in the example above will stop at n with 𝑓𝑓 𝑛𝑛 = 3 + 1 = 4 and chose 
the path up with a better 𝑓𝑓 𝑛𝑛𝑛 = 1 + 2 = 3.

Note: For greedy best-first search we just used 𝑓𝑓(𝑛𝑛)  =  ℎ(𝑛𝑛).

𝑔𝑔(𝑛𝑛) = 3
n

f 𝑛𝑛 = 4 

n’
f 𝑛𝑛′ = 3 



A* Search Example

𝑓𝑓 𝑛𝑛 = 𝑔𝑔(𝑛𝑛) + ℎ(𝑛𝑛) =Expansion rule: 
Expand the node with 
the smallest f(n)

ℎ(𝑛𝑛)



A* Search Example
𝑓𝑓 𝑛𝑛 = 𝑔𝑔 𝑛𝑛 + ℎ(𝑛𝑛)

ℎ(𝑛𝑛)



A* Search Example
𝑓𝑓 𝑛𝑛 = 𝑔𝑔 𝑛𝑛 + ℎ(𝑛𝑛)

ℎ(𝑛𝑛)



A* Search Example
𝑓𝑓 𝑛𝑛 = 𝑔𝑔 𝑛𝑛 + ℎ(𝑛𝑛)

ℎ(𝑛𝑛)
Reconsiders Rimnicu 

Vilcea because Fagaras 
may have a shorter total 

cost to Bucharest.



A* Search Example
𝑓𝑓 𝑛𝑛 = 𝑔𝑔 𝑛𝑛 + ℎ(𝑛𝑛)

ℎ(𝑛𝑛)



A* Search Example
𝑓𝑓 𝑛𝑛 = 𝑔𝑔 𝑛𝑛 + ℎ(𝑛𝑛)

ℎ(𝑛𝑛)



Source: Wikipedia

BFS vs. A* Search

BFS

A* A*

A* Search expands 
fewer nodes than BFS!

https://en.wikipedia.org/wiki/A*_search_algorithm


Implementation of A* Search

76

The order for expanding the 
frontier is  determined by 

𝑓𝑓(𝑛𝑛)

See BFS for function EXPAND.

Path cost to 𝒏𝒏 + heuristic from 𝒏𝒏 to goal = estimate of the total cost 
𝒈𝒈 𝒏𝒏 + 𝒉𝒉(𝒏𝒏)



Optimality: Admissible Heuristics

Definition: A heuristic ℎ is admissible if for every node 𝑛𝑛, 
ℎ 𝑛𝑛 ≤  ℎ∗(𝑛𝑛), where ℎ∗(𝑛𝑛) is the true cost to reach the goal 
state from 𝑛𝑛.
I.e., an admissible heuristic is a lower bound and never 
overestimates the true cost to reach the goal.

Example: Straight line distance never overestimates the actual 
road distance.

Theorem: If ℎ is admissible, A* is optimal.



Guarantees of A* Search

A* is optimally efficient 

No other tree-based search algorithm that employs the same heuristic can 
expand fewer nodes and still guarantee the optimal solution.

Proof: Any algorithm that does not expand all nodes with
 𝑓𝑓(𝑛𝑛)  <  𝐶𝐶∗ (the lowest cost of going to a goal node) cannot be 
optimal. It risks missing the optimal solution.



Properties of A*Search

• Complete?
Yes

• Optimal?
Yes

• Time?
Number of nodes for which 𝑓𝑓(𝑛𝑛)  ≤  𝐶𝐶∗ in the worst case 𝑂𝑂(𝑏𝑏𝑑𝑑) 

like BFS.

• Space?
Same as time complexity. This is often too high unless a very 

good heuristic is know.



Iterative-Deepening A* Search – IDA*

• Idea: A* search without a reached data structure.
• Remember: Regular IDA is uninformed and increases the cutoff by one after 

each iteration.

• IDA* uses the cost 𝑓𝑓 = 𝑔𝑔 + ℎ of a node as the cutoff. In each iteration, the 
cost cutoff increases slightly. It is optimal if steps are small and ℎ is 
admissible. 

• Issues: 
• By how much to increase the cutoff in each iteration.
• Rebuilds the tree many times.

• Other memory-bounded variants of A* search: 
• Recursive best-first search (RBFS) adds a 𝑓𝑓-limit to the depth-first search behavior 

of best-first search.
• Simplified memory-bounded A* (SMA*) performs A* till the memory is full and 

then drops the worst (highest 𝑓𝑓) leaf node from memory. It can rebuild the node 
later if needed.



Informed Search
Designing Heuristics



Designing Heuristic Functions

Example heuristics for the 8-puzzle:
• ℎ1(𝑛𝑛) = number of misplaced tiles
• ℎ1(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)  =  8

• ℎ2(𝑛𝑛) = total Manhattan distance (number of squares from the desired 
location of each tile)

• ℎ2(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)  =  3 + 1 + 2 + 2 + 2 + 3 + 3 + 2 =  18

Are ℎ1 and ℎ2 admissible?
1 needs to move 3 

positions



Heuristics from Relaxed Problems

• A problem with fewer restrictions on the actions is called a relaxed 
problem.

• The cost of an optimal solution to a relaxed problem is an admissible 
heuristic for the original problem. I.e., the true cost is never smaller.

• What relaxation is used by ℎ1 and ℎ2?
• ℎ1: If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then 

ℎ1(𝑛𝑛) gives the shortest solution.
• ℎ2: If the rules are relaxed so that a tile can move to any adjacent square, then 

ℎ2(𝑛𝑛) gives the shortest solution.

ℎ1(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)  =  8

ℎ2(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)
=  3 + 1 + 2 + 2 + 2 + 3 + 3 + 2 
=  18



Heuristics from Relaxed Problems

What relaxations are used in these two cases?

Start state

Goal state

Start state

Goal state

Euclidean distance Manhattan distance



Heuristics from Subproblems

• Let ℎ3(𝑛𝑛) be the cost of getting a subset of tiles 
(say, 1,2,3,4) into their correct positions. The final order of the * 
tiles does not matter. 

• Solutions for subproblems are an admissible heuristic. 
• Calculation:

• Very small subproblems are often easy to solve.
• We can precompute and save the exact solution cost for every or many 

possible subproblem instances – pattern database.

*
*
*

* *
* * *



Dominance: What Heuristic is Better?

Definition: If ℎ1 and ℎ2 are both admissible heuristics 
and ℎ2(𝑛𝑛)  ≥  ℎ1(𝑛𝑛) for all 𝑛𝑛, then 
ℎ2 dominates ℎ1 

Is ℎ1 
or ℎ2 better for A* search?

• A* search expands every node with
 𝑓𝑓(𝑛𝑛)  <  𝐶𝐶∗  ℎ(𝑛𝑛)  <  𝐶𝐶∗ –  𝑔𝑔(𝑛𝑛)

• ℎ2 
is never smaller than ℎ1. A* search with ℎ2 will expand 

less nodes and is therefore better.



Combining Heuristics

• Suppose we have a collection of admissible 
heuristics ℎ1, ℎ2, … , ℎ𝑚𝑚, but none of them 
dominates the others.

• Combining them is easy:

ℎ(𝑛𝑛)  =  max{ℎ1(𝑛𝑛), ℎ2(𝑛𝑛), … , ℎ𝑚𝑚(𝑛𝑛)}

• That is, always pick for each node the heuristic that 
is closest to the real cost to the goal ℎ∗(𝑛𝑛). 



Example: Effect of Information in Search

Typical search costs for the 8-puzzle

• State space:  9!
2

= 1,811,440 states

• Problem with solution at depth 𝑑𝑑 = 12 
  IDS      = 3,644,035 nodes
  A*(ℎ1) = 227 nodes 
  A*(ℎ2) = 73 nodes 

• Solution at depth 𝑑𝑑 = 24 
  IDS      ≈ 54,000,000,000 nodes 
  A*(ℎ1) = 39,135 nodes 
  A*(ℎ2) = 1,641 nodes 

Contains many 
redundant paths which 

IDS cannot break!

ℎ1(𝑛𝑛) = number of misplaced tiles
ℎ2(𝑛𝑛) = total Manhattan distance



Satisficing Search: Weighted A* Search

• Often it is sufficient to find a “good enough” solution if it can be found very 
quickly or with way less computational resources. I.e., expanding fewer 
nodes.

• We could use inadmissible heuristics in A* search (e.g., by multiplying ℎ(𝑛𝑛) 
with a factor 𝑊𝑊) that sometimes overestimate the optimal cost to the goal 
slightly. 

1. It potentially reduces the number of expanded nodes significantly.
2. This will break the algorithm’s optimality guaranty!

f 𝑛𝑛 = 𝑔𝑔 𝑛𝑛 + 𝑊𝑊 × ℎ(𝑛𝑛)

Weighted A* search: 𝒈𝒈 𝒏𝒏 + 𝑾𝑾 × 𝒉𝒉 𝒏𝒏   (𝟏𝟏 < 𝑾𝑾 < ∞)

The presented algorithms are special cases:
A* search:  𝑔𝑔 𝑛𝑛 + ℎ 𝑛𝑛   (𝑊𝑊 = 1)
Uniform cost search/BFS: 𝑔𝑔 𝑛𝑛    (𝑊𝑊 = 0)
Greedy best-first search: ℎ 𝑛𝑛   𝑊𝑊 = ∞



Example of Weighted A* Search

Weighted A* Search
𝑓𝑓(𝑛𝑛)  =  𝑔𝑔(𝑛𝑛) + 5 ℎ𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑛𝑛) 

Exact A* Search
𝑓𝑓 𝑛𝑛 =  𝑔𝑔(𝑛𝑛) + ℎ𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑛𝑛)

Source and Animation: Wikipedia

Breadth-first Search (BFS)
𝑓𝑓 𝑛𝑛 = # actions to reach n

Reduction in the number of expanded nodes

https://en.wikipedia.org/wiki/A*_search_algorithm


Summary 
Planning Agents



Remember: Planning Agent (Goal-based)
• The agent has the task of reaching a defined goal state. 
• The performance measure is typically the cost to reach the goal.  
• We will discuss a special type of goal-based agents called planning agents, which 

use search algorithms to plan a sequence of actions that lead to the goal.

Maze
Agent’s 
location

Map of 
the maze

Exit 
location

Search 
for a plan

𝑎𝑎𝑖𝑖 = argmin𝑎𝑎𝑖𝑖∈A �
𝑡𝑡=𝑖𝑖

𝑇𝑇

𝑐𝑐𝑡𝑡 � 𝑠𝑠𝑇𝑇∈ 𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔



A Planning Agent: Planning vs. Execution Phase

1. Planning is done by a planning function using search. The result is 
a plan.

2. The plan is executed by the agent function, which returns the 
planned actions from the plan step-by-step.

Note: The execution agent does not use percepts or the transition function. It blindly follows the plan.
Caution: This only works in an environment with deterministic transitions.  

S
S
S
E
…Step 2

2
3
4

Step

1

Current step 
(=program counter)

PlanAgent

…

Execution of the plan at step 2 returns action SPlanning function

…



Example: Complete Planning Agent to Solve a Maze

• The event loop calls the agent function for the next action.
• The agent function follows the plan or calls the planning function if there is no plan yet or it 

thinks the current plan does not work based on the percepts (replanning).

Environment

Physical 
Maze

Map 
= Transition function + 
initial and goal state

Sensors

Actuators

Plan

Planning 
function

Agent 
function

Current step 
in plan

Physical agent 

has an event loop:
• Read sensors
• Call agent 

function
• Execute action 

in the physical 
environment

• Repeat

percepts

next 
action

Sensor input

Execute actions 
step-by-step  in 

the physical 
environment

State



Summary: 
All Search Strategies

Algorithm Complete? Optimal? Time 
complexity

Space 
complexity

BFS (Breadth-
first search)

Yes If all step 
costs are equal 𝑂𝑂(𝑏𝑏𝑑𝑑) 𝑂𝑂(𝑏𝑏𝑑𝑑)

Uniform-cost
Search

Yes Yes Number of nodes with 𝑔𝑔(𝑛𝑛)  ≤  𝐶𝐶∗

DFS
In finite spaces 

(cycles checking) No 𝑂𝑂(𝑏𝑏𝑚𝑚) 𝑂𝑂(𝑏𝑏𝑏𝑏)

IDS Yes If all step 
costs are equal 𝑂𝑂(𝑏𝑏𝑑𝑑) 𝑂𝑂(𝑏𝑏𝑏𝑏)

Greedy best-
first Search

In finite spaces 
(cycles checking) No

Depends on heuristic
Best case: 𝑂𝑂(𝑏𝑏𝑏𝑏)

Worst case: 𝑂𝑂 𝑏𝑏𝑚𝑚

A* Search Yes Yes Number of nodes with 
𝑔𝑔(𝑛𝑛) + ℎ(𝑛𝑛)  ≤  𝐶𝐶∗

b:    maximum branching factor of the search tree
d:    depth of the optimal solution
m:   maximum length of any path in the state space
C*:  cost of optimal solution

With a good heuristic
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Implementation as Best-First Search
• All discussed search strategies can be implemented using Best-first search.
• Best-first search expands always the node with the minimum value of an 

evaluation function 𝒇𝒇(𝒏𝒏).

• Important note: Do not implement DFS/IDS using Best-first search! 
You will get poor space complexity from BFS and the disadvantages of DFS 
(not optimal and worse time complexity).

Search Strategy Evaluation function 𝒇𝒇(𝒏𝒏)
BFS (Breadth-first search) 𝑔𝑔(𝑛𝑛) (=uniform path cost)
Uniform-cost Search 𝑔𝑔(𝑛𝑛) (=path cost)
DFS/IDS (see note below!) −𝑔𝑔(𝑛𝑛)
Greedy Best-first Search ℎ(𝑛𝑛)
(weighted) A* Search 𝑔𝑔 𝑛𝑛 + 𝑊𝑊 × ℎ(𝑛𝑛)



• Tree search can be used for planning actions 
for goal-based agents in known, fully 
observable and deterministic environments.

• Issues are:
• The large search space typically does 

not fit into memory. We use a 
transition function as a compact 
representation of the transition 
model.

• The search tree is built on the fly, and 
we have to deal with cycles, redundant 
paths, and memory management.

• DFS/IDS is a memory efficient method used 
often in AI for uninformed search.

• Informed search uses heuristics based on 
knowledge or percepts to improve search 
performance (i.e., A* expand fewer nodes 
than BFS).

Conclusion
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