CS5/7320
Artificial Intelligence

Solving problems
by searching

AIMA Chapter 3

Slides by Michael Hahsler

based on slides by Svetlana Lazepnik
with figures from the AIMA textbook.

This work is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License.

i I I Online Material

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Contents

What are

search
problems?

4 N

Tree search

_ J

-

_

Search
space

~

J

4 I
Uninformed
search
N /

-

L

Informed
search

~

Search Problems

How do we define a search problem?

What are Search Problems?

* We will consider the problem of designing goal-based agents in
known, fully observable, and deterministic environments.

e Example environment:

Start

Remember: Planning Agent (Goal-based)

* The agent has the task of reaching a defined goal state.
* The performance measure is typically the cost to reach the goal.

* We will discuss a special type of goal-based agents called planning agents, which
use search algorithms to plan a sequence of actions that lead to the goal.

)
Agents - M\m
location R .
What the world
is like now
Ds 5
; What it will be like
What t d : . =
fimnyEsiasiy) if I do action A é
Map of S
Search B
the maze for a plan £
What z;ction 1 -
should do now
Exit *

|OcatI0n Actuators TL/

T

a; = argming e Z Ct | sp€ §90al
t=i

Planning for Search Problems

* For now, we consider only a discrete Initial state
environment using an atomic state ‘
representation (states are just labeled 1, 2, 3,

)

* The state space is the set of all possible states of
the environment and some states are marked as
goal states.

* The optimal solution is the sequence of actions
(or equivalently a sequence of states) that gives

the lowest path cost for reaching the goal.

Phases:

1) Search/Planning: the process of looking for the sequence of actions that reaches a
goal state. Requires that the agent knows what happens when it moves!

2) Execution: Once the agent begins executing the search solution in a deterministic,
known environment, it can ignore its percepts (open-loop system).

Definition of a Search Problem

Initial state Actions: {N, E, S, W}
‘ Transitions —

* Initial state: state description
* Actions: set of possible actions 4

* Transition model: a function that
defines the new state resulting from
performing an action in the current
state

* Goal state: state description
e Path cost: the sum of step costs

Important: The state space is typically too large to be enumerated, or it is
continuous. Therefore, the problem is defined by initial state, actions and the
transition model and not the set of all possible states.

Transition Function and Available Actions

Definition as an action schema:
Action(go(dir))

Original Description PRECOND: no wall in direction dir
EFFECT: change the agent’s location according to dir

Initial state Actions: {N, E, S, W} « Definition as a function:
‘ Transitions —» f:SXA - Sors' =result(s,a)

* A graph with states n
1 S 2

as vertices and actions

as edges.

2 N 1
* Function implemented 2 S 3

as a table representing

the state space

as a graph. 4 E 5
4 S 5
4 N 3

* Available actions in a state come from the
Goal state transition function. E.g.,
actions(4) = {E,S, N}

Note: Known and deterministic is a property of the transition function!

Example: Romania Vacation

e Onvacation in Romania; currently in Arad :
* Flight leaves tomorrow from Bucharest !! '

* |nitial state: Arad

* Actions: Drive from
one city to another.

* Transition model
and states: If you go
from city A to city B,
you end up in city B.

* Goal state: Bucharest

* Path cost: Sum of
edge costs.

i '~ UKRAIHE

Original Description

=] Cradea

State Space/Transition model
Defined as a graph

Eforie

Distance in miles

Example: Vacuum world AT

State Space] CJ : 3 R
eyl P 038

- R —

GoalstatesL[E‘Q‘ ‘dﬂ ¥

))

* Initial State: Defined by agent location and dirt location.

* Actions: Left, right, suck :
There are 8 possible

* Transition model: Clean a location or move. atomic states of the
* Goal state: All locations are clean. SR

Why is the number of
* Path cost: E.g., number if actions states for n possible

locations n(2™)?

Example: Sliding-tile Puzzle

* Initial State: A given configuration.

* Actions: Move blank left, right, up, down

* Transition model: Move a tile

* Goal state: Tiles are arranged empty and 1-8 in order

* Path cost: 1 per tile move.

State space size

Each state describes the location of each tile (including the
empty one). % of the permutations are unreachable.

* 8-puzzle: 9!/2 = 181,440 states

* 15-puzzle: 16!/2 =~ 1013 states

» 24-puzzle: 25!/2 =~ 102> states

3

Start State

4

7

Goal State

Example: Robot Motion Planning

8 S\l .

. Initlial State: Current arm position with real-valued coordinates of robot joint
angles.

* Actions: Continuous motions of robot joints.

* Transition model: Movement.

* Goal state: Desired final configuration (e.g., object is grasped).
* Path cost: Time to execute, smoothness of path, etc.

Solving Search Problems

Given a search

problem definition How do we find the optimal Construct a search
solution (sequence of tree for the state
e |nitial state actions/states) when space graph so we
* Actions shortest path algorithms for can use much
e Transition model graphs are too expensive? cheaper tree search!
e Goal state
e Path cost

Initial state

State space

Tt
-

S

Goal states L[

Issue: Transition Model is a Graph
and Not a Tree!

Cycles

Return to the same state

Initial state

R

BB |

<

L

S

'’
K
&
Oy
o S

Goal states Lg ‘dﬂ

A\«
7R
JD Non-cycle redundant paths

Multiple paths to get to the same state

Initial state

Goal states LC e

Creating a Search Tree

* Superimpose a “what if” tree of possible actions Root node =
and outcomes (states) on the state space graph. Initial state

* The Root node represents the initial stare.

* An action child node is reached by an edge i Non-cycle
representing an action. The corresponding state Edge = Action redundant
is defined by the transition model.

) path leads to

. Child node

Trees cannot have cycles Lloops). Cycles in the
fearch space must be broken to prevent infinite
00ps.

Trees cannot have multiple paths to the same
state. These are called redundant paths.
Removing suboptimal redundant paths improves
search efficiency.

A path through the tree corresponds to a Cycle
sequence of actions (states).

A solution is a path ending in a node
representing a goal state.

Nodes vs. states: Each tree node represents a
state of the system. If redundant path cannot be

prevented then state can be represented by Node representing
multiple nodes in the tree. 6
a Goal state

reexploring
@ the same

*subtree

Solution path

Differences Between Typical Tree Search and
Al Search

Typical tree search Al tree/graph search
* Assumes a given tree that fits * The search tree is too large to fit into
in memory. memory.

a. Builds parts of the tree from the
initial state using the transition
function representing the graph.

b. Memory management is very

important.
* Trees have by construction no * The search space is typically a very
cycles or redundant paths. large and complicated graph.

Memory-efficient cycle checking is
very important to avoid infinite loops
or minimize searching parts of the
search space multiple times.

* Checking redundant paths often
requires too much memory and we
accept searching the same part
multiple times.

Tree Search Algorithm Outline

1. [Initialize the frontier (set of unexplored known nodes) using the
starting state/root node.

2. While the frontier is not empty:
a) Choose the next frontier node to expand according to the
search strategy.
b) If the node represents a goal state, return it as the solution.
c) Else expand the node (i.e., apply all possible actions to the

transition model) and add its children nodes representing
the newly reached states to the frontier.

Tree Search Example

- Frontier

. — o e —_— o=
__..-—_"_'_H T H_‘_H"—"—-—
-—-—-"-—..'_._ o i —-——
-‘:_ Shiu ,_:‘:' qimimal_a:} < Faiind Ty
T e
P A AN
-l":_____lad] l':_agalasq‘fr "":_Olaclaa‘_:} -!"B_'l:nri-:l.l".-'l-:_e'-._:l_'"‘:l f‘:__:‘l"uacl ¥ -"':___Lug i Ty l":____ﬁljacl ‘_:'} -’:___Dla:la.;}__

Tree Search Example

CArd > 1. Expand Arad

m N

i \:H T -~ * A
—_— - ., T o “ # .
—— L . . T — N — L S
LAad > CFagaras b CQmdead Qmniandesd C_Ard 5 _Luge b C_Amd 5 Oradea
- - - ~ - ~ I T T - - L ¢ -~ - .

Tree Search Example

Amd

Frontier

........... imisoara

Example of
a cycle

We could have
also expanded
Timisoara or
Zerind!

Search Strategies: Properties

* A search strategy is defined by picking the order of node
expansion.

e Strategies are evaluated along the following dimensions:
* Completeness: does it always find a solution if one exists?
* Optimality: does it always find a least-cost solution?
* Time complexity: how long does it take?
e Space complexity: how much memory does it need?

* We will discuss different search strategies and use these
properties to compare them.

Space and Time Complexity

State Space vs..Search Tree Size

State Space vs. Search Tree Size

* Space and time complexity depend on the number of tree nodes searched
(created and visited) till a goal node is found. For a tree with n nodes we

have:
o(n)

« Remember: For perfect cycle checking and redundant path elimination, we
have a 1:1 mapping between nodes and states:

Nodes in the search tree = states in the search space
Otherwise, we may have multiple nodes representing a state.

* We have the following options to estimate n for a search problem:
a. Estimate the reachable state space size.
b. Estimate the number of searched tree nodes.

* Estimating the complexity is important to judge:
= How difficult is the problem?
= What algorithm will fit in memory?
= Can we find a solution fast enough?
= Can we find the optimal solution, or do we need to use a heuristic?

State Space Size Estimation

State Space

* Number of different states the agent and
environment can be in.

* Reachable states are defined by the initial
state and the transition model. Only reachable
states are important for search.

Estimation

* Even if the used algorithm represents the state
space using atomic states, we may know the
internal (factored) representation. It can be
used to estimate the problem size.

* The basic rule is to estimate the state space
size for factored state representation with [
fluents (variables) as:

n = [X;| X [X5] X - % [X;]

where |-| is the number of possible values.

State representation

® X, (-]
(] Xg L]
[] []

B = C o []
[| | |
[[
B C

(a) Atomic (b) Factored

The factored state
consists of variables
called fluents that

represent conditions
that can change over
time.

Reminder: Combinatorics - Permutations

==
RSN WS

' N
PERMUTATIONS |

‘\m\\\\.\“\“\\““\\!

{ ORotR DOES MATTER
\%\ T TR T

WiTHOUT
LEPETITIONS

Fiest Aheer $ X
@ Lode passwerd, peodle_in
T e u o foL
L a8}

Tiiz]

X

In how many ways can we
order/arrange n objects?

cown, Blaek}
= B
{ae} Ta Ry s = Laedh
ol L, e 8)
2x2=2%=4 08 Lo 8Y
el - fancey [3X2Xx1=6
P L6 2 MY
T fe,5,0)

Factorialn!=nx(n—1) x---x2x1

v NUMBEQ OF \ N | ! # Python
Lo *EWE@* : .

import math
r- fambet ‘* \Q.:hs
N~ number gﬁ .p’('nl's

T math.factorial(23)

Source: Permutations/Combinations Cheat Sheets by Oleksii Trekhleb
https://itnext.io/permutations-combinations-algorithms-cheat-sheet-68c14879aba5

https://itnext.io/permutations-combinations-algorithms-cheat-sheet-68c14879aba5
https://itnext.io/permutations-combinations-algorithms-cheat-sheet-68c14879aba5
https://itnext.io/permutations-combinations-algorithms-cheat-sheet-68c14879aba5
https://itnext.io/permutations-combinations-algorithms-cheat-sheet-68c14879aba5
https://itnext.io/permutations-combinations-algorithms-cheat-sheet-68c14879aba5
https://itnext.io/permutations-combinations-algorithms-cheat-sheet-68c14879aba5
https://itnext.io/permutations-combinations-algorithms-cheat-sheet-68c14879aba5
https://itnext.io/permutations-combinations-algorithms-cheat-sheet-68c14879aba5
https://itnext.io/permutations-combinations-algorithms-cheat-sheet-68c14879aba5
https://itnext.io/permutations-combinations-algorithms-cheat-sheet-68c14879aba5
https://itnext.io/permutations-combinations-algorithms-cheat-sheet-68c14879aba5

Reminder: Combinatorics - Combinations

WITH

T — WITHOUT

REPETITIONS B LEPETITIONS
EPETITY :

| : Feadl $olad in "r‘:‘g @
m Cownd 1n :ﬁur @q}(_@l’ e {b - phz% &

& {1,5,5,0,9) o\ Yorw anana | OY
{ T S $1§ SXMOIR E_ q.p@h_‘ %i‘u?ﬁ'g
3 g - A

Binomial Coefficient: (Z) =C(nr)= ,Cr

’L“.‘i.“-\‘* WY Read as “n choose r” because it is the number

by *““’

s for2stis of ways can we choose r out of n objects?
] : . Tl -

U : Special case forr = 2: () SGE)

LR : 2 p)

{c rh

Python

NUMBEQ import scipy.special

oF
ComBINATIO NS

the two give the same
results
scipy.special.binom(10, 5)
scipy.special.comb(10, 5)

Tommbee o options

Source: Permutations/Combinations Cheat Sheets by Oleksii Trekhleb
https://itnext.io/permutations-combinations-algorithms-cheat-sheet-68c14879aba5

https://itnext.io/permutations-combinations-algorithms-cheat-sheet-68c14879aba5
https://itnext.io/permutations-combinations-algorithms-cheat-sheet-68c14879aba5
https://itnext.io/permutations-combinations-algorithms-cheat-sheet-68c14879aba5
https://itnext.io/permutations-combinations-algorithms-cheat-sheet-68c14879aba5
https://itnext.io/permutations-combinations-algorithms-cheat-sheet-68c14879aba5
https://itnext.io/permutations-combinations-algorithms-cheat-sheet-68c14879aba5
https://itnext.io/permutations-combinations-algorithms-cheat-sheet-68c14879aba5
https://itnext.io/permutations-combinations-algorithms-cheat-sheet-68c14879aba5
https://itnext.io/permutations-combinations-algorithms-cheat-sheet-68c14879aba5
https://itnext.io/permutations-combinations-algorithms-cheat-sheet-68c14879aba5
https://itnext.io/permutations-combinations-algorithms-cheat-sheet-68c14879aba5

Example: What is the State Space Size?

A ; B
00 =)

O

== 0250

Dirt

* Permutation: A and B are different rooms, order

does matter!

* With repetition: Dirt can be in both rooms.
* There are 2 options (clean/dirty)

— 22

Robot location

e Canbein 1 outof2rooms.
- 2

Total: n=2x2%2=23=

S

%
]

&
3,

20

%

03

£

2
L [E] X] =

080 080
SEENEENE N

LEVETITIONS

@ Lode passwerd
LLa56)

1543

fagy — Ta 0y
{8}
Loy
Lo By

r.. # of rooms

n ... options

(D)

.)
‘\L\\‘\\\\\‘\‘-ﬂ‘\".\“&\‘%

{ PEAMUTATIONS |

S S T Rt

ORoRR DOES maTRR

AT ERee R e e ey

Witour
REPET ITI0NS

Fird thear 9 i’

P%ﬂl \n
REBL o raw
V;-of:!‘\:\vﬁ‘. { Smu“h\?)fo\nln L Q)\ndkp[\

41 41 %

st = nech

A, e 8y
Lo n®)
@—' Lo Aeh
Lo by
{Q)Qz,h'\

NUMBER OF "\ \ n l

T aumbec of A8
M= number of aghined

T TTe—

Examples: What is the State Space Size?

Often a rough upper limit is sufficient to determine how hard the search problem is.

Examples: What is the State Space Size?

Often a rough upper limit is sufficient to determine how hard the search problem is.

Action: Move one queen
at atime

All arrangements
of 9 elements.

Positions the agent
can be in.

All possible boards.

n < 3°=19,683

All arrangements with 8

| | |
1 1 1
1 1 1
_ 1 1 ' 1

n —.Number of | queens on the board. : n =9t |

white squares. ! ! ' Many boards are not
' n < 2%% ~1.8x10%° . Halfis . legal (e.g., all x’s)
E E unreachable: E
+ We onz have 8 queer;s: ! 9t 181 440 ' The actual number can be
y M= (s) ~ 4.4 %10 ron= 2 = ’ . obtained by a depth-first

traversal of the game tree.

Estimating the Search Tree Size

* Instead of estimating the state space size, it is often more useful to estimate the number of
searched nodes in the search tree.

* This is especially important when redundant paths are not eliminated, where one state can be
represented by multiple nodes.

* We can base the estimation on the search problem description:
* initial state
* Actions
* transition function.

e Used metrics are:

* b: maximum branching factor of the search tree
max. humber of available actions.

* m: maximal tree depth m = 3-
length of the longest path with loops removed.

* d: depth of the optimal solution
min. length of the path from the initial state to a solution state.

* The number of searched nodes is then a function of b, m and d.

n = f(b,md) = 0(f(b,m,d))

Example: What is the Search Complexity?

* b: maximum branching factor State Space with Transition Model
= max. number of available
actions? Initial state
5 X[Ll &
. : 4] | da?(>€E¢a K T4
* m: the number of actions in >@< = el = S
longest path? Without loops! 3 - - x
4 Goal statgf]dq @ |E‘Q'*
% %
e d: min. depth of the optimal
solution?

> Make sure it is a tree!

3

E)(a m p | es: Wh at |S th e b: maximum branching factor

m: max. depth of tree

Sea rCh CO m p | exrty? d: depth of the optimal solution

Often a rough upper limit is sufficient to determine how hard the search problem is.

b =
m
d

Examples: What is the T
Search Complexity?

Often a rough upper limit is sufficient to determine how hard the search problem is.

d: depth of the optimal solution

b = 4 actions b = 4 actions to move b = 9 actions for the

Action: Move one

— longest path to the queen at a time the empty tile. first move.
goal or a dead end m = Tryall 0(9!) m=9
(bounded by x X y) b =8 x (64— 8) = 448 d = ??? We need to d =.9(|fboth play
optimal)

d = shortest path to
the goal (bounded by

xXy)

m = We may have to

know.
tryall: (%) = 4.4 x 10°

d = move each queen
in the right spot = 8

1
1
1
1
1
1
1
1
1
1
1
1 solve the problem to
1
1
1
1
1
1
1
1
1
1

Things to
Remember

* Time and space complexity of search algorithms
determine if we can implement a tree search
solution!

* We can estimate the complexity by the following
methods:

1. Estimate the state space size using a
factored state representation

2. Estimate the search tree size using
branching factor and tree depth.

* If each note represents exactly one state then
both estimates will be equivalent. We will learn
soon when this is or is not the case.

* We typically calculate an estimate of the actual
size, or we use the Big-O notation if we are
interested in how the problem scales with size.

35

Unihformed Search

- Breadth-First.Search

o

Uninformed Search Strategies

The search algorithm/planning agent is not provided with information
about how close a state is to the goal state.

It can only use

* the labels of the atomic states and
* the transition function.

Idea: blindly search, following a simple strategy, until the goal state is
reached.

Search strategies:
* Breadth-first search strategy: BFS and uniform-cost search
* Depth-first search strategy: DFS and Iterative deepening search

Breadth-First Search (BFS)

Expansion rule: Expand shallowest unexpanded node in the frontier
(=FIFO).

Figure 3.8 Breadth-first search on a simple binary tree. At each stage, the node to be ex-
panded next is indicated by the triangular marker.

Data Structures
Frontier data structure: holds references to the green nodes (green) and is

implemented as a FIFO queue.

Reached data structure: holds references to all visited nodes (gray and green) and is
used to prevent visiting nodes more than once (cycle and redundant path checking).
Builds a complete tree with links between parent and child.

Implementation: Breadth-First Search

function BREADTH-FIRST-SEARCH(problem) returns a solution node or failure
node <— NODE(problem.INITIAL)
if problem.1S-GOAL(node.STATE) then return node
frontier +—a FIFO queue, with node as an element
reached < { problem .INITIAL}
while not [S-EMPTY(frontier) do Expand adds the next level
node < POP(frontier) below node to the frontier.
for each child in EXPAND(problem, node) do
s < child.STATE
if problem.I1S-GOAL(s) then return child
if s is not in reached then

add s to reached reached makes sure we do not

adq child to frontier visit nodes twice (e.g., in a
return failure

cycle or other redundant path).

Fast lookup is important.

39

Implementation: Expanding the Search Tree

Al tree search creates the search tree while searching.

 The EXPAND function tries all available actions in the current node
using the transition function (RESULTS).

* It returns a list of child nodes for the frontier.

function EXPAND(problem, node) yields nodes

s < node.STATE E—
for each action in problem.ACTIONS(s) do _
s' < problem .RESULT(s, action) function

cost < node. PATH-COST + problem.ACTION-COST(s. action, s)
vield NODE(STATE=5s', PARENT=node, ACTION=action, PATH-COST=cost)

Yield (generator function) can also be
implemented by returning a list of nodes.

d: depth of the optimal solution

Time and Space Complexity P e
Breadth-First Search

b: maximum branching factor

ze
O
2
_d=1
—_ ©
b=2 S
)
m=3
Goal
_ "’/ \~\‘ "’/ \\;\
b s ~
~~~~~~ & R, m2”” TN
(D (E (F (G
______ \ )\~___, \s\__‘, S
\\ ,/
\ S
\* . y
< s i \;k
{ E { C ) Goal
\ /

All paths to the depth of the goal are expanded. The search tree size is
1 +b+b%2+ ..+ b% =00



Properties of Breadth-First Search

5 d: depth of the optimal solution
* Complete: m: max. depth of tree

Yes b: maximum branching factor

* Optimal?
Yes — if cost is the same per step (action). Otherwise: Use uniform-cost search.

* Time?
Number of nodes created: 0(b%)

* Space?
Stored nodes: 0(b%)

Note:
* In Al, the large space complexity is usually a bigger problem than time!



Uniform-cost Search
(= Dijkstra’s Shortest Path Algorithm)

* Expansion rule: Expand node in the frontier with the least path cost from the initial state.

* Implementation: best-first search where the frontier is a priority queue ordered by lower f(n) =
path cost (cost of all actions starting from the initial state).

. Breadlth—first search is a special case when all step costs being equal, i.e., each action costs the
same!

* Complete? d: depth of the optimal solution

Yes, if all step cost is greater than some small positive constant € > 0 m: max. depth of tree
b: maximum branching factor

e Optimal?
Yes — nodes expanded in increasing order of path cost

* Time?
Expar(ljds all nodes with path cost ¢ < C* (cost of optimal solution) leading to O(b1*¢"/¢) for the number of
nodes.

Note: This can be greater than BFS’s Ogbd): the search can explore long paths consisting of small steps before
exploring shorter paths consisting of larger steps.

Space?
O(b1+C*/s)

See Dijkstra's algorithm on Wikipedia



https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

Implementation: Best-First Search Strategy

Note: This generalizes Breadth-First-Search

function UNIFORM-COST-SEARCH( problem ) returns a solution node, or failure
return BEST-FIRST-SEARCH(problem., PATH-COST)

/

function BEST-FIRST-SEARCH(problem, f) returns a solution node or failure
node <— NODE(STATE=problem.INITIAL)
frontier <— a priority queue ordered by £, _with node as an element
reached <—a lookup table, with one entry wi oroblem. INITIAL and value node

while not IS—EMPTY(ﬁontzer) do The order for expanding the
node < POP(frontier) frontier is determined b
if problem.1S-GOAL(node.STATE) then return node _ bath ‘ H y
for each child in EXPAND(problem, node) do f(n)— ZEUA) GO WAEIT Wi
initial state to node n.

5 <— child . STATE
if s is not in reached or child. PATH-COST < reached|s|.PATH-COST then

reached|s] < child
add child to frontier

return failure This check is added to BFS! It

visits a node again if it can
be reached by a better
(cheaper) path.

See BFS for function EXPAND.



Unihformed Search

ﬁ,'f R
Depth First Search
.ntf"



Depth-First
Search (DFS)

Expansion rule:
Expand deepest

unexpanded node in

the frontier (last
added).

Frontier: stack (LIFO)

No reached data
structure: forgets

completely explored

subtrees.

Needs Cycle
checking: don’t
expand nodes that
are already in the
current path to the
root node.

Cannot avoid
redundant paths:
Leads to multiple
nodes representin
the same state an
replicated work.

>@® @ @
- - ‘m@
F G
1

B C 268 © @f\@
D E F G D E F G ..@,
H 1

H (I (T K (LM IN: 000l (1) 0T KD (Lo M (NGO

PN @
_,,-"" H"H,H .’__,.-"'# . - -,
@ © B O ) ©
© F G B ® = G > F G

K L) M N O

PO @D T KL MNO PO ELMNO KL M N O
H"F \H""R ,"HJ \K‘x HHH
@{r © © >O
B F G ® F G F G
PO® L M N 0 P® L M N 0 L M N O
@ @ @
HC NNC H“*C
L M N ©O PO @ N © pE N ©

Figure 3.11 A dozen steps (left to right, top to bottom) in the progress of a depth-first search
on a binary tree from start state A to goal M. The frontier is in green, with a triangle marking
the node to be expanded next. Previously expanded nodes are lavender, and potential future
nodes have faint dashed lines. Expanded nodes with no descendants in the frontier (very faint
lines) can be discarded.



Implementation: DFS

* DFS could be implemented like BFS/Best-first search, just takin%the last element from the
frontier (LIFO). However, to reduce the space complexity to O(bm), no reached data
structure can be used!

* Options:

* Iterative implementation: Build the tree, and abandoned branches are removed from memory.
Cycle checking is only done against the current path. This is similar to Backtracking search.

* Recursive implementation: Cycle checking is an issue because the current path is stored in the
function call stack, which is not accessible to the function. An additional data structure that
contains the nodes in the current path can be used.

®  DFSusesf = o

function DEPTH-LIMITED-SEARCH( problem, ) returns a node or failure or cutoff

frontier < a LIFO queue (stack) with NODE(problem.INITIAL) as an element
result < failure

while not [S-EMPTY( frontier) do
node <— POP(frontier)
if problem.1S-GOAL(node.STATE) then return node Cycles: Prevent cycles by checking

if DEPTH(node) > { then against the current path. We also need
result +— cutoff to ensure that the frontier does not

else if not 1S-CYCLE(node) do contain the same state more than
for each child in EXPAND(problem, node) do ONCe.
add child to frontier
return result

See BFS for function EXPAND.

Memory management: remove nodes
for abandoned branches here!

Redundant paths: We cannot prevent
other redundant paths.




d: depth of the optimal solution

Time and Space Complexity e i it 72
Depth-First Search

b: maximum branching factor

Goal « DFS finds this goal first < Not optimal!

* Time: O(b™) — worst case is expanding all paths.
* Space: O(bm) - if it only stores the frontier nodes and the current path.



Properties of Depth-First Search

* Complete?

* In finite search spaces, cycles are avoided by checking for repeated states
along the path.

* Incomplete in infinite search spaces.

e Optimal?

No — returns the first solution it finds. d: depth of the optimal solution
m: max. depth of tree

b: maximum branching factor

* Time?
ThOe(\gogst case is to reach a solution at maximum depth m in the last path:
m
Terrible compared to BFS if m > d.

e Space?
O(bm) is linear in max. tree depth m which is very good but only achieved if
no reached data structure and memory management is used!

Cycles can be broken but redundant paths cannot be checked.



Iterative Deepening Search (IDS)

Can we
» get DFS’s good memory footprint,
 avoid infinite cycles, and
* preserve BFS’s optimality guaranty?

Use depth-restricted DFS and gradually increase the depth.

Check if the root node is the goal.

Do a DFS searching for a path of length 1

If goal not found, do a DFS searching for a path of length 2
If goal not found, do a DFS searching for a path of length 3

s wnh e



Iterative
Deepening
Search
(IDS)

limit: 1 2<)
B C [>2
limit- 2 >@
E c
O E F D E F G L= F G F G
F E\@ @\%
limit: 3 >®
E c
i E F )] E F G F G
H I I E L MN

o I K (L) M N O
o L. ‘M ‘N O




Implementation: DS

function ITERATIVE-DEEPENING-SEARCH( problem) returns a solution node or failure

for depth =0 to oo do
result <— DEPTH-LIMITED-SEARCH( problem. depth)

if result # cutoff then return result

function DEPTH-LIMITED-SEARCH( problem, ) returns a node or failure or cutoff
frontier < a LIFO queue (stack) with NODE(problem.INITIAL) as an element

result < failure
while not [S-EMPTY( frontier) do

node <— POP(frontier)
if problem.1S-GOAL(node.STATE) then return node

if DEPTH(node) > ( then

result +— cutoff
else if not IS-CYCLE(node) do
for each child in EXPAND(problem, node) do

add child to frontier
return result

See BFS for function EXPAND.



Properties of Iterative Deepening Search

¢ CompIEte? d: depth of the optimal solution
Yes m: max. depth of tree

b: maximum branching factor

e Optimal?
Yes, if step cost = 1 (like BFS)

* Time?
Consists of rebuilding trees up to d times
db + (d—1)b% + ... + 1b% = 0(b%) < Slower than BFS, but the same complexity class!

e Space?
O(bd) < linear space. Even less than DFS since m < d. Cycles need to be handled by the
depth-limited DFS implementation.

Note: IDS produces the same result as BFS but trades much better space
complexity for worse run time.

This makes IDS/DFS the

workhorse of Al.



)
®
S
4
=

-
Q
&
-

2

-




Informed Search

Al search problems typically have a very large search space. We would like to
improve efficiency by expanding as few nodes as possible.

Idea: The agent can use additional information in the form of “hints” about
what promising states are to explore first. These hints are derived from

 information the agent has (e.g., a map with the goal location marked) or
* percepts coming from a sensor (e.g., a GPS sensor and coordinates of the goal).

Method: The agent uses a heuristic function h(n)
* to rank nodes in the frontier based on the additional information, and

* to select the most promising node in the frontier for expansion using the best-
first search strategy.

Discussed algorithms:
* Greedy best-first search
e A* search



Heuristic Function

* Heuristic function h(n) estimates the cost of reaching a node representing the
goal state from the currently considered node n.

e Examples:
Euclidean distance Manhattan distance

Start state Start state

¢ \ /

* State for currently Goal state Goal state
considered node



Heuristic for the Romania Problem

Use the map for hints: Estimate the driving distance from Arad to Bucharest using a straight-
line distance on the map.

Straight-line distance

5] E“!!P ] ' I. !
Buc == Q
Cralova L&0
Dobrets 143
Eforie 161
IFagaras 176
Giurgiu 77
(] vaslul Hirsova 131
I Ia= 174
Lugoj 1+
MhMehadia 141
MNeamt 134
Oradea 180
L i g5 ] ] Hirzowa E.hﬂ:! Vik 10
mnikcu Vikea |93
& : mlcenl Sibiu =
Bucharest Timisoara 129
Dobreta [ Jad Urziceni &0
H craiova Etarie  ¥aslui 199

[] Slurgiu Ferind 374



Greedy Best-First Search Example

Expansion rule: Expand the
node that has the lowest value
of the heuristic function h(n)

h(n

o e
Cralova
Dobreta
Eforie
Fagaras
Giurgiu

Hirsova

Pitesh

Rimnicu Vikea
Sibiu
Timisoara
Urziceni
Vashui

Zerind

193

9



Greedy Best-First Search Example

=

253 iz a4

Straight-line distance

© Buchamst

Arad W
Bucharest Q
Cralova 160
Dobreta 242
Eforie 151
Fagaras L7&
Giurgiu 77
Hirsova 151

Iasi




Greedy Best-First Search Example

CAmd

{:::S-E.IL::} ‘--imisasua -ﬂ 7 E-

7 329 a4

"

Straight-line distance

© Buchamrst

Arad W

Bucharest Q
75 Cralova 160

[] Yaslui

i
) Hirsova Rimnicu Vikea 93

75 Sibiu 53
Timisoara L]

Dobreta Urziceni 80
Efarie ".’E]“i 199

i clurgiu Ferind 174



Greedy Best-First Search Example

< >
e
366 y R . 380 193
: ™,
¢ Sbiu_DOpGuchas=D
253 a

Total:
140 + 99 + 211 = 450 miles

=

imisoara

iz

a4

Straight-line distance

© Buchamrst
Arad
Bucharest
Cralova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
Iasi

Pitesh

Rimnicu Vikea
Sibiu
Timisoara
Urziceni
Vashui

Zerind

166

0
160
242
161
176
151
226
244
241
234

10
193
153
9

199
a4



Properties of Greedy Best-First Search

 Complete?
Yes — Best-first search if complete in finite spaces.

* Optimal?
No

Total:

140 + 99 + 211 =450 miles

Alternative through Rimnicu Vilcea: ™
140 + 80 + 97 + 101 = 418 miles

Straight-line distance

© Buchamrst
Arad
Bucharest
Cralova
Dobreta
Eforie
Fagaras
Giurgiu

Hirsova

Pitesh

Rimnicu Vikea
Sibiu
Timisoara
Urziceni
Vashui

Zerind

]

Q
L&0
242
lal
17&

151
225
244
241
234

10
193

153
9

199
a4



Implementation of Greedy Best-First search

BeSt-F|rSt Expand the frontier

using

Search f(n) = h(n)




Implementation of Greedy Best-First Search

Heuristic h(n) so we expand the node with the lowest estimated cost

T~

function BEST-FIRST-SEARCH(problem, f) returns a solution node or failure

node +— NODE(STATE=problem.INITIAL)
frontier < a priority queue ordered by f._with node as an element

reached < a lookup table, with one entry wilTT™agggroblem . INITIAL and value node
while not [S-EMPTY(frontier) do

node < POP( frontier)
if problem.1S-GOAL(node.STATE) then return node

for each child in EXPAND(problem. node) do

5 < child.STATE
if s is not in reached or child. PATH-COST < reached[s|.PATH-COST then

reached|s] < child
add child to frontier
return failure

The order for expanding the
frontier is determined by

fin)

See BFS for function EXPAND.

64



Properties of Greedy Best-First Search

* Complete?
Yes — Best-first search if complete in finite spaces.

I ?
° Optlmal : d: depth of the optimal solution
No m: max. depth of tree

b: maximum branching factor

* Time?
Worst case: O(b™) < like DFS
Best case: O(bm) — If h(n) is 100% accurate we only expand a
single path.

* Space?
Same as time complexity.



Informed S
A* Sec




The Optimality Problem of
Greedy Best-First search

Greedy best-first search only considers the estimated cost to the goal.

h=2

h=1 h=1 h=1 h=1 h=1

Initial
Goal

State
h = 1 is better than h = 2.

Greedy best-first will go this way
and never reconsider!




h=2

A" Search @f(n’):\3h=1

AW =3 é O
N\ O
Initial h=1 h=1 h=1 h=1 h=1 G |
State 02

* Idea: Take the cost of the path to n called g(n) into account to avoid
expanding paths that are already very expensive.

* The evaluation function f(n) is the estimated total cost of the path
through node n to the goal:

f(n) = gn) + h(n)

g(n): cost so far to reach n (path cost)

h(n): estimated cost from n to goal (heuristic)

* The agent in the example above will stop at n with f(n) = 3 + 1 = 4 and chose
the path up with a better f(n’) =1+ 2 = 3.

Note: For greedy best-first search we just used f(n) = h(n).



A" Search Example

> Aad D
Expansion rule: f(n) = g(n) + h(n) = aes5es
Expand the node with
the smallest f(n)

h(n)

Straight-line distance

=S
)

3 C NG resi o

Craiova L&D

Dobreta 247

Eforie 161

Fagaras 176

Giurgiu T7

Hirsova 151

Iasi 2176

Lugoj 244
Mehadia 241

Meamt 234

Oradea =0

Pitesti [Ts]
QHISVE pimnicu Vikea 103
Sibiu 53
Timisoara 179

Urziceni /0

Eforie  Vashii 199

Zerind 1374



A" Search Example

E= f(m) = g(n) + h(n)

— . e

393=140+253 H7=118+329 449=75+374

h(n)

Straight-line distance

© Buchamrst

Arad 55
EI.E']'I.EI‘EE" ]
Cralova L&D
Dobreta 247
Torie 161
Fagaras 176
Giurgiu 7

Hirsova 151




A" Search Example

= f(n) = g(n) + h(n)

L . e

<»

N 447=118+329 449-75:374

G46=280+366 415=239+176 671=291+380 413=220+193

h(n)

Straight-line distance

© Buchamst

Arad 1
Bucharest Q
Craiova 160
Dobreta 242
Eforie 161
Fagaras 176
Giurgiu T
Hirsova 151
Iasi 2176
Lugoj 244
MMehadia 241
MNeamt 234
Oradea 350
Pitesh (s
Timisoara 309
Urziceni )
Vashui 199

Zerind 174



A" Search Example

(A f() =g) + h(n)

c:‘::»

— ‘“""-— H7=118+329 449=75+374

G46=280+366 4+15=239+176 &71= 291+35C|

{Clal:nra Yy £ F'IIBEU ¥ { Sblu ]

526=366+180 417=317+100 553=300+253

h(n)

Reconsiders Rimnicu Straight—line distance

H © Buchamrst
Vilcea because Fagaras oo -
may have a shorter total Bucharest 0
raiova &0
cost to Bucharest. Dobreta 1
Eforie L&l
Fagaras 176
Giurgiu 77
Hirsova 151
Iasi 2176
Lugoj 244
MMehadia 241
MNeamt 234
Oradea 350
Pitesh 10
Rimnicu Vikea 193
Sibiu 53
Timisoara 379
Urziceni B0
Vaslui 199

Zerind 174



A" Search Example

e f(n) = g(n) + h(n)

—— .H.. ——_

-

— ‘\"'---._ H7=118+329 448=T5+374

--

G46=280+366 ,’ \\ G71= 291+35C|

591=338+4253  450=45040 526=366+160 4-1?_31?+1Uﬂ 553=300+253

h(n)

Straight-line distance

© Buchamrst

Arad 266
Bucharest 0
Cralova 160
Dobreta 242
Eforie L&l
Fagaras 176
Giurgiu T
Hirsova 151
Iasi 224
Lugoj 244
MMehadia 241
MNeamt 234
Oradea 350
Pitesh 10
Rimnicu Vikea 93
Sibiu 253
Timisoara 39
Urziceni 80
Vashui 199

Zerind 174



A" Search Example

c:‘:>

= ‘\1 £47=118+329 449=75+374

m

G46=280+366 ,’ x\ 6?1 291+35C|

581=338+253 450=450+0 525—Eﬁﬁ+1ﬁﬂ ..--"" T 533=300+233

PTTD o> oD

418=418+0 G15=455+160 G07=414+193

h(n)

Straight-line distance

© Buchamst

Arad WE
Bucharest Q
Cralova 160
Dobreta 242
Eforie lal
Fagaras 176
Giurgiu 7
Hirsova 151
Iasi 226
Lugoj 244
MMehadia 241
MNeamt 234
Oradea 350
Pitesh 10
Rimnicu Vikea 93
Sibiu 53
Timisoara 319
Urziceni 80
Vashui 199

Zerind 174



BFS vs. A* Search

/\*

Source: Wikipedia

BFS

/\*

=T EEEREEEREREEEE R

A SRS S SRS 2R 2 8 ReRogel
R ERRRRRRRRRRRR R 0D
2 S S22 RS R RN E S
2 s E S SRR SRR S R R Ran X R S

ER s r 00000888888 o

L2 3 ¥ o E 3 ¥
122900009 E & o0
T ZTTETTTRLD | o £ F ¥
L E 2 X 2 2 22 X3RS o 5 X ¥
A2 S S X XS S 3 o X F ¥
A E S E XX E RS S 8 s X3 ¥
SRt e et PO9 - 2aae
R R AN
SRR RRRR R R BB RN LR RES
 E Y Y Y T FEE F R R
SRR BBRERBRERER DR
SRBBBL BB RB R BB R RES
A S R E R R EEEEEERE R
SRS RERRRBRRRERRBRERRS
Soad
(s X+ Ra8 X+
(+8 EE B+
S 2o
coce o ¥ ¥
SO 9900 eNee® & 10
CRunrssennen® g 2 X+
XX EEXEEREEER Y % 3 X+
EEEEEEEEREEREY ] 2 3 R+
SR I EI R SRR RS g RtRe
AR BB R AR LT P00 OO
R L L2 L 3 T S R
r!i!!iﬁl!iiiiiiiﬂﬂ
E XX R EE EE R R R R R B R
EEE RS E R R R R R R R ReR4
FE R AR R R RERERED
ISR EEEEEEEE R BeRe
FTETEETE R R R R EeXele

A* Search expands
fewer nodes than BFS!


https://en.wikipedia.org/wiki/A*_search_algorithm

Implementation of A* Search

Path cost to n + heuristic from n to goal = estimate of the total cost
g(m) + h(n)

/

function BEST-FIRST-SEARCH(problem, f) returns a solution node or failure
node +— NODE(STATE=problem.INITIAL)
frontier <— a priority queue ordered by f. with node as an element
reached < a lookup table, with one entry with rohlemn. INITIAL and value node
while not [S-EMPTY(frontier) do
The order for expanding the

node <— POP(frontier)
if problem.1S-GOAL(node.STATE) then return node frontier is determined by
f(n)

for each child in EXPAND(problem. node) do

5 < child.STATE
if s is not in reached or child. PATH-COST < reached[s].PATH-COST then

reached|s] < child
add child to frontier
return failure

See BFS for function EXPAND.

76



Optimality: Admissible Heuristics

Definition: A heuristic h is admissible if for every node n,
h(n) < h*(n), where h*(n) is the true cost to reach the goal
state from n.

l.e., an admissible heuristic is a lower bound and never
overestimates the true cost to reach the goal.

Example: Straight line distance never overestimates the actual
road distance.

Theorem: If h is admissible, A" is optimal.



Guarantees of A* Search

A* is optimally efficient

No other tree-based search algorithm that employs the same heuristic can
expand fewer nodes and still guarantee the optimal solution.

Proof: Any algorithm that does not expand all nodes with
f(n) < C* (the lowest cost of going to a goal node) cannot be
optimal. It risks missing the optimal solution.



Properties of A*Search

* Complete?
Yes

e Optimal?
Yes

* Time?
NFITbBelerOf nodes for which f(n) < C* in the worst case 0(b%)
ike BFS.

* Space?
Same as time complexity. This is often too high unless a very
good heuristic is know.



iterative-Deepening A* Search — IDA*

Idea: A* search without a reached data structure.

Remember: Regular IDA is uninformed and increases the cutoff by one after
each iteration.

IDA* uses the cost f = 5{1+ h of a node as the cutoff. In each iteration, the
cc&st _cujctc))lff increases slightly. It is optimal if steps are small and h is
admissible.

Issues:
* By how much to increase the cutoff in each iteration.

* Rebuilds the tree many times.

Other memory-bounded variants of A* search:
* Recursive best-first search (RBFS) adds a f-limit to the depth-first search behavior
of best-first search.

e Simplified memory-bounded A* ﬁSMA*)CIoerforms A* till the memory is full and
}:hen %rops;hg worst (highest f) leaf node from memory. It can rebuild the node
ater if needed.



Informed
Designing




Designing Heuristic Functions

7 2 4 1 2

5 6 3 4 5

8 3 1 6 7 8
Start State Goal State

Example heuristics for the 8-puzzle:
* hy(n) = number of misplaced tiles

* hy(start) = 8

* h,(n) = total Manhattan distance (number of squares from the desired
location of each tile)

* hy(start) = 3+1+2+2+2+3+3+2 = 18

1 needs to move 3

Are h,and h, admissible? pesliiions



Heuristics from Relaxed Problems

* A problem with fewer restrictions on the actions is called a relaxed
problem.

* The cost of an optimal solution to a relaxed problem is an admissible
heuristic for the original problem. l.e., the true cost is never smaller.

* What relaxation is used by h; and h,?
* hy: If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then
h,(n) gives the shortest solution.
* h,: If the rules are relaxed so that a tile can move to any adjacent square, then
h,(n) gives the shortest solution.

! 2 4 1 2 h,(start) = 8
> ° 3 t > h,(start)
3 3 1 5 - 3 zi8+1+2+2+2+3+3+2

Start State Goal State



Heuristics from Relaxed Problems

What relaxations are used in these two cases?

Euclidean distance Manhattan distance
Start state Start state

Goal state Goal state



Heuristics from Subproblems

* Let h,(n) be the cost of getting a subset of tiles
(say, i,2,3,4) into their correct positions. The final order of the *

tiles does not matter.
e Solutions for subproblems are an admissible heuristic.

* Calculation:
* Very small subproblems are often easy to solve.

* We can precompute and save the exact solution cost for every or many
possible subproblem instances — pattern database.

*1| 2 4 1 2
K K 3 || 4 K
K 3 1 x ||| % [|[ *

Start State Goal State



Dominance: What Heuristic is Better?

Definition: If h, and h, are both admissible heuristics
and h,(n) = h,(n) for all n, then
h, dominates h,

Is h, or h, better for A* search?
* A* search expands every node with
fn) < C" h(n) < C"- gn)
* h, is never smaller than h;. A* search with h, will expand
less nodes and is therefore better.



Combining Heuristics

* Suppose we have a collection of admissible
heuristics hy, h,, ..., h,, but none of them
dominates the others.

* Combining them is easy:
h(n) = max{h,(n), h,(n),...,h(n)}

* That is, always pick for each node the heuristic that
is closest to the real cost to the goal h*(n).



Example: Effect of Information in Search

Typical search costs for the 8-puzzle

* State space: %! = 1,811,440 states

* Problem with solution at depth d = 12
IDS =3,644,035 nodes
A*(h,) =227 nodes
A*(h,) =73 nodes

 Solution at depth d = 24
IDS =54,000,000,000 nodes
A*(h,) = 39,135 nodes
A*(h,) = 1,641 nodes

7 2 4
5 6
8 3 1

h,(n) = number of misplaced tiles

h,(n) = total Manhattan distance

Contains many

redundant paths which
IDS cannot break!




Satisficing Search: Weighted A* Search

* Often it is sufficient to find a “good enough” solution if it can be found very
qu:jckly or with way less computational resources. l.e., expanding fewer
nodes.

* We could use inadmissible heuristics in A* search (e.g., by multiplying h(nl)
VY'itR ? factor W) that sometimes overestimate the optimal cost to the goa
slightly.

1. It potentially reduces the number of expanded nodes significantly.
2. This will break the algorithm’s optimality guaranty!

f(n) = gn) + W X h(n)

Weighted A* search: gn) + W x h(n)

The presented algorithms are special cases:

A* search: gn) + h(n) (W =1
Uniform cost search/BFS:  g(n) (W =0)
Greedy best-first search: h(n) (W = o)



Example of Weighted A* Search

Reduction in the number of expanded nodes

EEEEETFEREEEREEEEEELD
BRERRERRRRRRRRRDOD

2 S S S SRR X oo 04 4 onn
4 T i oo
oA oo
[ SR s oo
Giiessseness & oo age
ooww R
CHuBRRRRRRRERG B H80 g::::!: g?ég
e R E S EESEEERS B SREE Peabah - 4 & o
E R R R R TR B IR O..p." oo
S AL AR S st D I R T Gonace® 800
LE E RS S SRR R - 1 TR .
T GRLCRRN SR OO
R T T T R R T T R QIO T UL MO ©
B Qom0 seeen
RN L AR R R R D SRnLon
ERL AR R R Soon
PLERERE X AL RAOT QOMCT
FEERRRRRRE OO OLoo
coe
Breadth-first Search (BFS) Exact A* Search Weighted A* Search
f(n) = # actions to reach n fn) = gn) + hgyag(n) f(n) = gn) +5hg(n)

Source and Animation: Wikipedia



https://en.wikipedia.org/wiki/A*_search_algorithm

abd\ Sy BT

~ Planning Agents



Remember: Planning Agent (Goal-based)

* The agent has the task of reaching a defined goal state.
* The performance measure is typically the cost to reach the goal.

* We will discuss a special type of goal-based agents called planning agents, which
use search algorithms to plan a sequence of actions that lead to the goal.

)
Agents - M\m
location R .
What the world
is like now
Ds 5
; What it will be like
What t d : . =
fimnyEsiasiy ) if I do action A é
Map of S
Search B
the maze for a plan £
What z;ction 1 -
should do now
Exit *

|OcatI0n Actuators TL/

T

a; = argming e Z Ct | sp€ §90al
t=i




A Planning Agent: Planning vs. Execution Phase

1. Planning is done by a planning function using search. The result is
a plan.

2. The plan is executed by the agent function, which returns the
planned actions from the plan step-by-step.

Planning function Execution of the plan at step 2 returns action S
Agent Step Plan
1
2
Current step 3
(=program counter)
4

Note: The execution agent does not use percepts or the transition function. It blindly follows the plan.
Caution: This only works in an environment with deterministic transitions.



Example: Complete Planning Agent to Solve a Maze

Map
= Transition function +
initial and goal state

Sensor input

Planning
function

Agent
function

Current step
in plan

Execute actions
step-by-step in
the physical
environment

* The event loop calls the agent function for the next action.
* The agent function follows the plan or calls the planning function if there is no plan yet or it
thinks the current plan does not work based on the percepts (replanning).



Needs cycle checking
Cannot avoid redundant paths

maximum branching factor of the search tree

Summary: depth of the optimal solution
All Search Strategies : maximum length of any path in the state space

: cost of optimal solution

Algorithm Complete? Optimal? Time Space
complexity complexity

BFS (Breadth- If all step ; ;
first search) Yes costs are equal 0(b%) 0(b%)
Um;z::;OSt Yes Yes Number of nodes with g(n) < C*
B In finite spaces
DFS (cycles checking) No 0(b™) 0(bm)
If all step d
_ DS Yes costs are equal 0(b9) 0(bd)
_ In finite spaces Depends on heuristic
(i,reedsy bes; (cycles checking) No Best case: 0(bd)
st Searc Worst case: O(b™)

A* Search Yes Yes With a goo%1 E%y)}&n%df Vzlf h




Implementation as Best-First Search

» All discussed search strategies can be implemented using Best-first search.

* Best-first search expands always the node with the minimum value of an
evaluation function f(n).

Search Strategy Evaluation function f(n)

BFS (Breadth-first search) g(m) (=uniform path cost)
Uniform-cost Search g(n) (=path cost)

J gt
Greedy Best-first Search h(n)
(weighted) A* Search gn) + W x h(n)

* Important note: Do not implement DFS/IDS using Best-first search!
You will get ,ooor space complexity from BFS and the disadvantages of DFS
(not optimal and worse time complexity).



o

—y

Conclusion

* Tree search can be used for pIanninF actions
y

for goal-based agents in known, ful
observable and deterministic environments.

Issues are:

* The large search space typically does
not fit into memory. We use a
transition function as a compact
representation of the transition
model.

The search tree is built on the fly, and
we have to deal with cycles, redundant
paths, and memory management.

DFS/IDS is a memory efficient method used
often in Al for uninformed search.

Informed search uses heuristics based on
knowledge or percepts to improve search
performance (i.e., A* expand fewer nodes
than BFS).




	CS 5/7320 �Artificial Intelligence��Solving problems by searching�AIMA Chapter 3
	Contents
	Search Problems
	What are Search Problems?
	Remember: Planning Agent (Goal-based)
	Planning for Search Problems
	Definition of a Search Problem
	Transition Function and Available Actions
	Example: Romania Vacation
	Example: Vacuum world
	Example: Sliding-tile Puzzle
	Example: Robot Motion Planning
	Tree Search
	Solving Search Problems
	Issue: Transition Model is a Graph �           and Not a Tree!
	Creating a Search Tree
	Differences Between Typical Tree Search and AI Search
	Tree Search Algorithm Outline
	Tree Search Example
	Tree Search Example
	Tree Search Example
	Search Strategies: Properties
	Space and Time Complexity��State Space vs. Search Tree Size
	State Space vs. Search Tree Size
	State Space Size Estimation
	Reminder: Combinatorics - Permutations
	Reminder: Combinatorics - Combinations
	Example: What is the State Space Size?
	Examples: What is the State Space Size?
	Examples: What is the State Space Size?
	Estimating the Search Tree Size
	Example: What is the Search Complexity?
	Examples: What is the �Search Complexity?
	Examples: What is the �Search Complexity?
	Things to Remember
	Uninformed Search
	Uninformed Search Strategies
	Breadth-First Search (BFS)
	Implementation: Breadth-First Search 
	Implementation: Expanding the Search Tree
	Time and Space Complexity �Breadth-First Search
	Properties of Breadth-First Search
	Uniform-cost Search �(= Dijkstra’s Shortest Path Algorithm)
	Implementation: Best-First Search Strategy
	Uninformed Search
	Depth-First Search (DFS)
	Implementation: DFS
	Time and Space Complexity�Depth-First Search
	Properties of Depth-First Search
	Iterative Deepening Search (IDS)
	Iterative Deepening Search (IDS)
	Implementation: IDS
	Properties of Iterative Deepening Search
	Informed Search�Introduction
	Informed Search
	Heuristic Function
	Heuristic for the Romania Problem
	Greedy Best-First Search Example
	Greedy Best-First Search Example
	Greedy Best-First Search Example
	Greedy Best-First Search Example
	Properties of Greedy Best-First Search
	Implementation of Greedy Best-First search
	Implementation of Greedy Best-First Search
	Properties of Greedy Best-First Search
	Informed Search�A* Search
	The Optimality Problem of �Greedy Best-First search
	A* Search
	A* Search Example
	A* Search Example
	A* Search Example
	A* Search Example
	A* Search Example
	A* Search Example
	BFS vs. A* Search
	Implementation of A* Search
	Optimality: Admissible Heuristics
	Guarantees of A* Search
	Properties of A*Search
	Iterative-Deepening A* Search – IDA*
	Informed Search�Designing Heuristics
	Designing Heuristic Functions
	Heuristics from Relaxed Problems
	Heuristics from Relaxed Problems
	Heuristics from Subproblems
	Dominance: What Heuristic is Better?
	Combining Heuristics
	Example: Effect of Information in Search
	Satisficing Search: Weighted A* Search
	Example of Weighted A* Search
	Summary �Planning Agents
	Remember: Planning Agent (Goal-based)
	A Planning Agent: Planning vs. Execution Phase
	Example: Complete Planning Agent to Solve a Maze
	Summary: �All Search Strategies
	Implementation as Best-First Search
	Conclusion

