
CS 5/7320
Artificial Intelligence

Search with
Uncertainty
AIMA Chapters 4.3-4.5

Slides by Michael Hahsler
with figures from the AIMA textbook

Online Material
This work is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Recap: Solving Search
Problems under Certainty

No Uncertainty

• Full observability: The
agent always knows
(=can observe) the state.

• Deterministic
environment with a
known transition model
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑠𝑠, 𝑎𝑎 = 𝑠𝑠′

The agent can predict
the outcome of its
actions. Goal states

Initial state

State space: A state completely describes the
condition of the environment and the agent.

Solution: Use tree search in the planning phase to create a sequence of actions also
called a plan. Then blindly execute the plan: [Suck, Right, Suck]

Sources and Consequence
of Uncertainty
Sources: The environment may be
• Not fully observable: The agent may be uncertain about its current state.
• Stochastic (transition function): The agent may not be able to perfectly predict

the outcome of its actions.

Consequences:
1. The agent needs to keep track of all the states it could be in.

This set is called a belief state.

2. A fixed precomputed plan (sequence of actions) does not work for stochastic
transition functions, but a

 conditional plan (also called strategy or policy)

that depends on percepts is needed.

Types of
uncertainty in the
environment*

Nondeterministic Actions:
Outcome of an action in a state is
uncertain.

No observations:
Sensorless problems.

Partially observable environments:
The agent cannot directly observe
the state of the environment.

Exploration:
Unknown environments and
online search.

* we will quantify uncertainty with
probabilities later.

Nondeterministic
Actions
Stochastic Environment (Stochastic Transition Model)

Definition: Nondeterministic Actions

The outcome of actions in the environment is
nondeterministic = the transition model needs to
describe uncertainty.

Example transition:

 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑠𝑠1,𝑎𝑎 = 𝑠𝑠2, 𝑠𝑠4, 𝑠𝑠5

i.e., action 𝑎𝑎 in 𝑠𝑠1 can lead to one of several states.

Note the ‘s’ here

Example:
Erratic Vacuum World

Regular deterministic vacuum world, but the action
‘suck’ is more powerful and nondeterministic:

a) On a dirty square: cleans the square and
sometimes cleans dirt on adjacent squares as
well.

b) On a clean square: sometimes deposits some dirt
on the square.

Example:
Erratic Vacuum World

Suck can lead to two different states! We need a conditional plan
 [Suck, if State = 5 then [Right, Suck] else []]

Start State

Goal states

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 1, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 5, 7

Transition Model as an AND-OR Search Tree

LOOP: No need to
continue search.

Solution is the
same as above.

OR

AND

…

OR node (choose one action)

AND node (all possible outcomes)

Search the AND-OR Tree
• Goal: Find a subtree with one action

for each OR node and considering all
outcomes of the AND nodes that has
only goal leaf nodes.

• Descend the tree depth-first:
• OR node: trying one action at a time.
• AND node: consider all outcomes and

check recursively.
• Ignore cycles.
• Abandon a subtree if not all leaf nodes

are the desired goal nodes.
• Stop when the first complete subtree

with only goal leaf nodes is found.

• Construct the conditional plan that
represents the subtree starting at the
root node.

Conditional Plan:
[Suck, if State = 5 then [Right, Suck] else []]

Suck

Suck

Right

OR node

AND node

…

Recursive AND-OR Tree Search (DFS)

Notes:
• The DFS search tree is implicitly created using the call stack (recursive algorithm).
• DFS is not optimal! It returns the first valid plan (subtree) that it finds.

// don’t follow loops using path
// try all possible actions

// consider all possible outcomes, none can fail!

// fail if we find any non-goal subtree

= nested If-then-else statements

path is used for cycle checking!

// fail means we found no action that leads to
// a goal-only subtree

An Agent using the Conditional Plan

• Planning uses search to find a conditional plan that always leads to a goal state.
• The conditional plan can be executed by a model-based reflex agent that uses a

program counter to execute the plan and percepts for the conditions in the if-
statements.

[Suck,
 if State = 5 then
 [Right,
 Suck]
 else
 []
]

Step 2

2
3
4

Step
1

4b

Agent’s State
(= program counter)

Cond. PlanAgent

Example: After the initial action “suck”

Search With
No Observations
Using actions to “coerce” the world into a smaller set of known states

Sensorless Problems

Conformant problem: The agent has no sensors, so the
environment is not observable.

Why is this useful?

• Example: Doctor prescribes a broad-band antibiotic instead
of performing time-consuming blood work to find a more
targeted antibiotic. This saves time and money.

• Basic idea: Find a solution (a plan) that works (reasonably
well) from any state and then just blindly execute it.

Definition: Belief State

• The agent does not know exactly what state it is in.
• However, it may know that it is in one of a set of possible states.

This set is called a belief state of the agent.
• Example: b = 𝑠𝑠2, 𝑠𝑠4, 𝑠𝑠6

b

?

Actions to Coerce the
World into Known States

right

Initial belief state {1,2,3,4,5,6,7,8}

Goal
states

• Actions can reduce the number of possible states.
• Example: Deterministic but unobservable vacuum world.

The agent does not know its position or the dirt distribution.

?

Actions to Coerce the
World into Known States
• Actions can reduce the number of possible states.
• Example: Deterministic but unobservable vacuum world.

The agent does not know its position or the dirt distribution.

suck

?

Actions to Coerce the
World into Known States
• The action sequence [right, suck, left, suck] coerces the world into

the goal state 7. This plan works from any initial state!
• Note: There are no observations, so there is no need for a

conditional plan.

[right,
suck,
left,

suck]

?

The Reachable Belief State Space

No observations, so we
get a solution sequence

from an initial belief
state:

[Right, Suck, Left, Suck]

Initial
belief
state

The size of the belief
state space is the
powerset of the
original 𝑁𝑁 states:

𝒫𝒫𝑠𝑠 = 2𝑁𝑁 = 28 = 256

Only a small fraction
(12 belief states) are
reachable by actions.

?

Goal belief
states

Finding a Plan

Formulate as a regular search problem and solve with DFS, IDS, BFS or A*:
• States: All belief states (=powerset 𝒫𝒫𝑠𝑠 of the set of 𝑁𝑁 states has size 2𝑁𝑁)
• Initial state: Often the belief state containing all states.
• Actions: Available actions of a belief state are the union of the possible actions

for all the states it contains.
• Transition model: 𝑏𝑏′ = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑏𝑏, 𝑎𝑎 = {𝑠𝑠′: 𝑠𝑠′ = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑠𝑠, 𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠 ∈ 𝑏𝑏}
• Goal test: Does the belief state only contain goal states?
• Simplifying property: If a belief state (e.g., 𝑏𝑏1 = {1,2,3,4,5}) is solvable (i.e.,

there is a sequence of actions that coerce all states to only goal states), then
belief states that are subsets (e.g., 𝑏𝑏2 = {2,5}) are also solved using the same
action sequence. This can be used to prune the search tree.

Other approach:
• Incremental belief-state search. Generate a solution that works for one state

and check if it also works for all other states. If it does not, then modify the
solution slightly. This is similar to local search.

Note: State space size makes this
impractical for larger problems!

Case Study
The agent can move up, down right, and left.

The agent has no sensors and does not know
its current location.

1. Can you navigate to the goal location?
How?

2. What would you need to know about the
environment?

3. What type of agent can do this?

3m

8m

2m 1m

Agent

x
Goal

location

Partially Observable
Environments
Using Observations to Learn About the State

Percepts and Observability

• Many problems cannot be solved efficiently
without sensing (e.g., 8-puzzle).

• We need to see at least one square.

Percept function: 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑠𝑠
 …𝑠𝑠 is the state

• Fully observable: 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑠𝑠 = 𝑠𝑠
• Sensorless: 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑠𝑠 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
• Partially observable: 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑠𝑠 = 𝑜𝑜
𝑜𝑜 is called an observation and tells us something about 𝑠𝑠

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑠𝑠 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

Problem: Many
states (different

order of the hidden
tiles) can produce the

same observation!

Use Observations to Learn
About the State

Assume we have a current belief state 𝑏𝑏 (i.e., the set of states we could be in).
1. Prediction for action: Choose an action 𝑎𝑎 and compute a new belief state that
results from the action using the transition model.

�𝑏𝑏 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑏𝑏, 𝑎𝑎 = �
𝑠𝑠∈𝑏𝑏

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑠𝑠, 𝑎𝑎)

2. Update with observation: You receive an observation 𝑜𝑜 and only keep states that
are consistent with the new observation. The filtered belief after observing 𝑜𝑜 is:

𝑏𝑏𝑜𝑜 = 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 �𝑏𝑏, 𝑜𝑜 = {𝑠𝑠 ∶ 𝑠𝑠 ∈ �𝑏𝑏 ∧ 𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑠𝑠 = 𝑜𝑜}

Writing both steps as one update: 𝑏𝑏 ← 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑏𝑏, 𝑎𝑎), 𝑜𝑜

Update with
observation 𝑜𝑜

Prediction for
action 𝑎𝑎 𝑏𝑏

The agents chooses an action and then receive an observation.
Idea: Observations can be used to learn about the agent’s state.

Example: Deterministic local
sensing vacuum world

Predict for
action a

Update with
observation 𝑜𝑜

Update with
observation 𝑜𝑜

Prediction for
action 𝑎𝑎 𝑏𝑏

𝑏𝑏 ← 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑏𝑏 , 𝑎𝑎 , 𝑜𝑜
 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 1,3 ,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 , [𝐵𝐵,𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷] = {2}

?

?

Solving Partially
Observable Problems
Use an AND-OR tree of belief states to create a conditional
plan.

[A,Clean] [B,Clean][B,Dirty]

OR

AND
AND

Initial
belief state

Solving Partially
Observable Problems 2
Use an AND-OR tree of belief states to create a conditional
plan.

Plan: [Suck, …]

[A,Clean] [B,Clean][B,Dirty]

OR

AND
AND

predict
update

SuckSuck

Solving Partially
Observable Problems 3
Use an AND-OR tree of belief states to create a conditional
plan.

Plan: [Suck, Right, …]

[A,Clean] [B,Clean][B,Dirty]

OR

AND
AND

…

predict
update

Right

Right

Solving Partially
Observable Problems 4
Use an AND-OR tree of belief states to create a conditional
plan.

Plan: [Suck, Right, if b = {6} then Suck else []]

b = {6} is the result of the
update with o = [B, Dirty]

[A,Clean] [B,Clean][B,Dirty]

OR

AND
AND

…

predict
update Suck

State Estimation and
Approximate Belief States

• Agents choose an action and then receive an observation from the
environment.

• The agent keeps track of its belief state using the following update:

𝑏𝑏 ← 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑏𝑏, 𝑎𝑎 , 𝑜𝑜

• This process is often called
• monitoring,
• filtering, or
• state estimation.

• Issue: The agent needs to be able to update its belief state following
observations in real time! For many practical applications, there is only time to
compute an approximate belief state! Such approximations are commonly used
in control theory and reinforcement learning.

Update with
observation 𝑜𝑜

Prediction for
action 𝑎𝑎 𝑏𝑏

Case Study:

Partially
Observable
8-Puzzle

Partially Observable
8-Puzzle
Give a problem description for this problem.

• States:
• Initial state:
• Actions:
• Transition model:
• Goal test:
• Percept function:

This problem can be solved using an AND-OR
Tree, but is there an easier solution?

a. What type of agents would we use?
b. What algorithms can be used?

Exploration
Unknown Environments and Online Search

Recap: Offline Search

• Offline search aka planning: Create a plan using the state
space and the transition model before taking any action.

• The plan can be
• a sequence of actions, or
• a conditional plan that uses observations to account for uncertainty

or imperfect observability.
• The agent plans using search with the known transition

function to predict the consequence of actions.

• Issue: In an unknown environment, we do not know the
transition function.

• We cannot predict outcomes of actions; therefore, we
cannot plan using offline search!

Online Search
• Online search does not use planning! It explores the real world

one action at a time. Offline prediction and update are replaced
by “act” and “observe.”

• Useful for
• Unknown environment: The agent has no complete model of how the

environment works. It needs to explore an unknown state space and/or
what actions do. I.e., it needs to learn the transition function

𝑓𝑓 ∶ 𝑆𝑆 × 𝐴𝐴 → 𝑆𝑆
• Real-time problems: When offline computation takes too long, and

there is a penalty for sitting around and thinking.
• Nondeterministic domain: Conditional plans become very large. Only

focus on what happens instead of planning for everything!

Act Observe Act Observe Act …

Design Considerations for
Online Search
• Knowledge: What does the agent already know about the

outcome of actions? E.g.,
• Does go north and then south lead to the same location?
• Where are the walls in the maze?

 Often a part or all of the transition function is unknown!

• We need a safely explorable state space/world: There are no
irreversible actions (e.g., traps, cliffs) or the agent needs to be
able to avoid these actions during exploration using percepts.

• Exploration order is important: Expanding nodes in local order (=
close by) is more efficient if you must execute the actions to get
observations: Use depth-first search with backtracking instead of
BFS or A* Search.

Transition
function

Online Search: A Model-based Reflex
Agent to Learn the Transition Model
Setting: Environment is deterministic and fully observable (= the percept is the full state) but the
transition model function 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟() is unknown.
Approach: The agent builds the map 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑠𝑠, 𝑎𝑎 → 𝑠𝑠𝑠 by trying all actions and backtracks when all
actions in a state have been explored (this is a form of iterative DFS called backtracking DFS).

Learn the result function
(= transition function)

Untried is the “frontier”

Unbacktracked stores the current path

Record found transitions

Keep breadcrumbs to go back
later

Use breadcrumbs to walk back

a stack with the current path

Case Study: DFS with Backtracking
for an unknown Maze
• We don’t have a map

(transition function) of the
maze. We can only see
adjacent squares.

• We cannot plan, so we must
explore by walking around!

• A simple method is
backtracking DFS that only
stores the current path for
backtracking (on a stack) to
get back to untied actions
when we run into a dead
end (think leaving
breadcrumbs or a string).

• This is an iterative
implementation of DFS
without a reached data
structure. Unbacktaced
represents the currently
explored path, and untried
represents the frontier. DFS
memory management
applies.

Start

The
transition
function is
unknown.

Unbacktracked
(= current path)

untried
(~ frontier)

Agent

Important concepts that you
should be able to explain and
use now…

• Difference between solution types:
a. a fixed action sequence (a plan),
b. a conditional plan (also called a strategy or

policy), and
c. exploration.

• What are belief states?

• How actions can be used to coerce the world into
known states.

• How actions and observations (from percept
functions) can be used to learn about the state: State
estimation with repeated predict and update steps.

• The use of AND-OR trees to solve small problems.

• Large problems are hard!

	CS 5/7320 �Artificial Intelligence��Search with Uncertainty�AIMA Chapters 4.3-4.5
	Recap: Solving Search Problems under Certainty
	Sources and Consequence �of Uncertainty
	Types of uncertainty in the environment*
	Nondeterministic Actions
	Definition: Nondeterministic Actions
	Example:�Erratic Vacuum World
	Example: �Erratic Vacuum World
	Transition Model as an AND-OR Search Tree
	Search the AND-OR Tree
	Recursive AND-OR Tree Search (DFS)
	An Agent using the Conditional Plan
	Search With �No Observations
	Sensorless Problems
	Definition: Belief State
	Actions to Coerce the �World into Known States
	Actions to Coerce the �World into Known States
	Actions to Coerce the �World into Known States
	The Reachable Belief State Space
	Finding a Plan
	Case Study
	Partially Observable Environments
	Percepts and Observability
	Use Observations to Learn About the State
	Example: Deterministic local sensing vacuum world
	Solving Partially Observable Problems
	Solving Partially Observable Problems 2
	Solving Partially Observable Problems 3
	Solving Partially Observable Problems 4
	State Estimation and �Approximate Belief States
	Case Study: ��Partially Observable 8-Puzzle
	Partially Observable 8-Puzzle
	Exploration
	Recap: Offline Search
	Online Search
	Design Considerations for�Online Search
	Online Search: A Model-based Reflex Agent to Learn the Transition Model
	Case Study: DFS with Backtracking for an unknown Maze
	Important concepts that you should be able to explain and use now…

