CS5/7320

Artificial Intelligence

Search with
Uncertainty

AIMA Chapters 4.3-4.5

Slides by Michael Hahsler
with figures from the AIMA textbook

+ ¥ -+ .I
This work is licensed under a Creative Commons U 3 .° 33 -3
Attribution-ShareAlike 4.0 International License. Online Material

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Recap: Solving Search AA B

Problems under Certainty 2R 00K
No Uncertainty State .s.pace: A state.completely describes the
condition of the environment and the agent.
e Full observability: The Initial state
agent always knows .
(=can observe) the state. L |]=f I =) 3 R
R |o2R o3R8 |38

e Deterministic
environment with a
known transition model L C
Result(s,a) = s’
The agent can predict
the outcome of its
actions.

Solution: Use tree search in the planning phase to create a sequence of actions also
called a plan. Then blindly execute the plan: [Suck, Right, Suck]

Sources and Consequence
of Uncertainty

Sources: The environment may be
* Not fully observable: The agent may be uncertain about its current state.

» Stochastic (transition function): The agent may not be able to perfectly predict
the outcome of its actions.

Consequences:

1. The agent needs to keep track of all the states it could be in.
This set is called a belief state.

2. Afixed precomputed plan (sequence of actions) does not work for stochastic
transition functions, but a

conditional plan (also called strategy or policy)

that depends on percepts is needed.

Types of
uncertainty in the
environment*

* we will quantify uncertainty with
probabilities later.

Nondeterministic Actions:
Outcome of an action in a state is
uncertain.

No observations:
Sensorless problems.

Partially observable environments:
The agent cannot directly observe
the state of the environment.

Exploration:
Unknown environments and
online search.

Nondetermini:
Actions

Definition: Nondeterministic Actions

The outcome of actions in the environment is
nondeterministic = the transition model needs to
describe uncertainty.

Note the ‘s’ here

Example transition:

Results(sy,a) = {s,,54,Ss}

i.e., action a in s can lead to one of several states.

Example: AN

Y et — oo

Erratic Vacuum World |28 | %8

Regular deterministic vacuum world, but the action
‘suck’ is more powerful and nondeterministic:

a) On a dirty square: cleans the square and
sometimes cleans dirt on adjacent squares as

well.

b) On a clean square: sometimes deposits some dirt
on the square.

Example: AT
Erratic Vacuum World [%®$ | %

Start State

Results(1, Suck) = {5,7}

Goal states

Suck can lead to two different states! We need a conditional plan
[Suck, if State = 5 then [Right, Suck] else []]

Transition Model as an AND-OR Search Tree

. |
&

=] OR node (choose one action)

. AND node (all possible outcomes)

AND

GOAL SV \\ng}?r Left Suck

LOOP: No need to ces
continue search.
Solution is the
same as above.

GOAL LOOP

Search the AND-OR Tree

1|22] OR node

Right

E) AND node O
=A

Left Suck

Suc

sl

Els] o I%@I
LooP roop 9T roop GOAL

Conditional Plan:

[Suck, if State = 5 then [Right, Suck] else []]

Goal: Find a subtree with one action
for each OR node and considering all
outcomes of the AND nodes that has
only goal leaf nodes.

Descend the tree depth-first:

OR node: trying one action at a time.

AND node: consider all outcomes and
check recursively.

Ignore cycles.

Abandon a subtree if not all leaf nodes
are the desired goal nodes.

StoR when the first complete subtree
with only goal leaf nodes is found.

Construct the conditional plan that
represents the subtree starting at the
root node.

Recursive AND-OR Tree Search (DFS)
P - nested If-then-else statements

function AND-OR-SEARCH(problem) returns a conditional plan, or failure
return OR-SEARCH(problem, problem.INITIAL. [])
function OR-SEARCH(problem, State,pamdﬁional plan, or failure
if problem.1S-GOAL(state) then return the empty plan
if [S-CYCLE(path) then return failure
for each action in problem.ACTIONS(state) do // try all possible actions
plan <~ AND-SEARCH(problem, RESULTS(state, action), [state] + path])
if plan # failure then return [action| + plan]
return failure

function AND-SEARCH(problem, states, path) returns a conditional plan, or failure
for each s; in states do // consider all possible outcomes, none can fail!
plan; < OR-SEARCH(problem, s;, path)
if plan; = failure then return failure
return [if s; then plan, else if s, then plan, else ...if s,_; then plan _, else plan]

Notes:

* The DFS search tree is implicitly created using the call stack (recursive algorithm).
* DFSis not optimal! It returns the first valid plan (subtree) that it finds.

An Agent using the Conditional Plan

* Planning uses search to find a conditional plan that always leads to a goal state.
* The conditional plan can be executed by a model-based reflex agent that uses a

program counter to execute the plan and percepts for the conditions in the if-
statements.

Example: After the initial action “suck”

Agent Step Cond. Plan
1 [Suck,
Agent's State 2 if State = 5 then
(= program counter) ;
3 [Right,
4 Suck]

else
4b []

=
--I

"
s
| v

Search _
No Observations

Sensorless Problems

Conformant problem: The agent has no sensors, so the
environment is not observable.

Why is this useful?

* Example: Doctor prescribes a broad-band antibiotic instead
of performing time-consuming blood work to find a more
targeted antibiotic. This saves time and money.

e Basic idea: Find a solution (a plan) that works (reasonably
well) from any state and then just blindly execute it.

A? B
Definition: Belief State % Y

* The agent does not know exactly what state it is in.

* However, it may know that it is in one of a set of possible states.
This set is called a belief state of the agent.

* Example: b = {s,, 54, 5¢}

b
1 d. 2 d’
Bp |03 8 |os%
s [=A 4 —A
5 s
5 [=A : =A
s 3
7 (= g A

Actions to Coerce the A?A B
World into Known States o5x | oIk

* Actions can reduce the number of possible states.

 Example: Deterministic but unobservable vacuum world.
The agent does not know its position or the dirt distribution.

Initial belief state {1,2,3,4,5,6,7,8}

= | |=A JR) A

TS IS SIS SR | 8R

i - R P s RN < RS P
e SR m g ; 2R

5 A i 6 f(‘ 5% 6 =A

053 LS S S

N Goal 0

Actions to Coerce the A?% B
World into Known States x| oIk

* Actions can reduce the number of possible states.

* Example: Deterministic but unobservable vacuum world.
The agent does not know its position or the dirt distribution.

Actions to Coerce the A?A B
World into Known States o5x | oIk

* The action sequence [right, suck, left, suck] coerces the world into
the goal state 7. This plan works from any initial state!

* Note: There are no observations, so there is no need for a
conditional plan.

1 ff‘ _ 2 1 .
2R | 2R 08R
3 f{‘ 4 _
00R LS
5 =A) 6
00R
_

The Reachable Belief State Space

2 | 3|2 ‘
L
=A
s|=A.. |7 ’ 4

LA

Initial
belief
state

Goal belief

states

N

A

The size of the belief
state space is the
powerset of the
original N states:

28 = 256

Only a small fraction
(12 belief states) are
reachable by actions.

No observations, so we
get a solution sequence
from an initial belief
state:

[Right, Suck, Left, Suck]

Finding a Plan

Note: State space size makes this

impractical for larger problems!

Formulate as a regular search problem and.solve with DFS, IDS, BFS or A*:
* States: All belief states (=powerset P, of the set of N states has size 2V)
* Initial state: Often the belief state containing all states.

e Actions: Available actions of a belief state are the union of the possible actions
for all the states it contains.

 Transition model: b’ = Results(b,a) = {s':s' = Result(s,a) and s € b}
* Goal test: Does the belief state only contain goal states?

« Simplifying property: If a belief state (e.g., by = {1,2,3,4,5}) is solvable (i.e.,
there is a sequence of actions that coerce all states to only goal states), then
belief states that are subsets (e.g., b, = {2,5}) are also solved using the same
action sequence. This can be used to prune the search tree.

Other approach:

* Incremental belief-state search. Generate a solution that works for one state
and check if it also works for all other states. If it does not, then modify the
solution slightly. This is similar to local search.

3m

A

v

-
2m -~
<4+ x
Goal
location

8m

Case Study

The agent can move up, down right, and left.

The agent has no sensors and does not know
its current location.

1. Can you navigate to the goal location?
How?

2. What would you need to know about the
environment?

3. What type of agent can do this?

PartlaLyamerv ble

Environments

Percepts and Observability

* Many problems cannot be solved efficiently
without sensing (e.g., 8-puzzle).

* We need to see at least one square.

Percept function: Percept(s)

...S is the state

* Fully observable: Percept(s) = s
 Sensorless: Percept(s) = None

* Partially observable: Percept(s) = o
o is called an observation and tells us something about s

—=

Use Observations to Learn &N
About the State e

The agents chooses an action and then receive an observation. V
Idea: Observations can be used to learn about the agent’s state.

Assume we have a current belief state b (i.e., the set of states we could be in).

1. Prediction for action: Choose an action a and compute a new belief state that
results from the action using the transition model.

b = Predict(b,a) = U Result(s,a)
SEDb

2. Update with observation: You receive an observation o and onl{)keep states that
are consistent with the new observation. The filtered belief after observing o is:

b, = Update(B, 0) ={s: s€Db A Percept(s) = o}

Writing both steps as one update: b « Update(Predict(b, a), o)

. e A
Example: Deterministic local d@
sensing vacuum world 0S8R

0

%

Prediction for Update with Predict for Update with
action a observation o action a observation o

[B,Dirty]

=
21w | #s

b « Update(Predict(b , a), o)
Update(Predict({1,3}, Right), [B, Dirty]) = {2}

[B,Clean]

Solving Partially A
Observable Problems 058 | ok

Ulse an AND-OR tree of belief states to create a conditional
plan.

ﬁ \ Initial . |=A , -

[(Mll=] belief state 2R | =8 eR | =8

|II |

Suc 3 %‘ 4 = d‘
[A,Clean] CBQND 5 d! - 6 ?OD‘

1 =) SR
P oy oy

| 7 8

Solving Partially
Observable Problems 2

=]

2R

Use an AND-OR tree of belief states to create a conditional

plan.

E igh Suck
) [AClean] £ N [BClean]
&

8 -
2| 3:.

Plan: [Suck, ...]

L [5] 5| R

3R

Soo
2283

080 080
k o & k o &

Solving Partially
Observable Problems 3

=]

2R

Use an AND-OR tree of belief states to create a conditional

plan.

Soo
28R

Sao
2288

| [X]|FE] FE
9Go

080 080
NRNTENELN

Solving Partially Al
Observable Problems 4 0SR

Ulse an AND-OR tree of belief states to create a conditional
plan.

b = {6} is the result of the
update with o = [B, Dirty]

Prediction for Update with
action a observation o

o g

* Agents choose an action and then receive an observation from the
environment.

State Estimation and
Approximate Belief States

* The agent keeps track of its belief state using the following update:

b « Update(Predict(b,a), o)

* This process is often called
* monitoring,
* filtering, or
* state estimation.

* Issue: The agent needs to be able to update its belief state following
observations in real time! For many practical applications, there is only time to
compute an approximate belief state! Such approximations are commonly used
in control theory and reinforcement learning.

Case Study:

Partially
Observable
S-Puzzle

Partially Observable
8-Puzzle

Give a problem description for this problem.

States:

Initial state:
Actions:
Transition model:
Goal test:
Percept function:

This problem can be solved using an AND-OR
Tree, but is there an easier solution?

a. What type of agents would we use?
b. What algorithms can be used?

|I'._T|
> of
l-i.'i:
s & -
. — N)
. _'"‘!‘-l-“t".' -
d S i | X 4
ot P

- "

Exploration

Recap: Offline Search

* Offline search aka planning: Create a plan using the state
space and the transition model before taking any action.

* The plan can be
* asequence of actions, or

* a conditional plan that uses observations to account for uncertainty
or imperfect observability.

* The agent plans using search with the known transition
function to predict the consequence of actions.

* Issue: In an unknown environment, we do not know the
transition function.

* We cannot predict outcomes of actions; therefore, we
cannot plan using offline search!

Online Search

* Online search does not use planning! It explores the real world
one action at a time. Offline prediction and update are replaced

by “act” and “observe.”

e Useful for

* Unknown environment: The agent has no complete model of how the
environment works. It needs to explore an unknown state space and/or
what actions do. l.e., it needs to learn the transition function

f:SXA->S

* Real-time problems: When offline computation takes too long, and
there is a penalty for sitting around and thinking.

* Nondeterministic domain: Conditional plans become very large. Only
focus on what happens instead of planning for everything!

Design Considerations for
Online Search

* Knowledge: What does the agent already know about the

outcome of actions? E.g., -
* Does go north and then south lead to the same location? } Transition
* Where are the walls in the maze? function

Often a part or all of the transition function is unknown!

* We need a safely explorable state space/world: There are no
irreversible actions Fe.g., traps, cliffs) or the agent needs to be
able to avoid these actions during exploration using percepts.

* Exploration order is important: Expanding nodes in local order (=
close by) is more efficient if you must execute the actions to get
observations: Use depth-first search with backtracking instead of
BFS or A* Search.

Online Search: A Model-based Reflex
Agent to Learn the Transition Model

Setting: Environment is deterministic and fully observable (= the percept is the full state) but the
transition model function result() is unknown.
Approach: The agent builds the map result(s, a) — s’ by trying4ll actions and backtracks when all
actions in a state have been explored (this is a form of iterative DFS called backtracking DFS).

Learn the result function
(= transition function)

g
function ONLINE-DFS-AGENT(problem. s’) returns an action
s, a, the previous state and action, initially null

persistent: result. a table mapping (s, a) to s'. initially empty Untried is the “frontier”
untried, a table mapping s to a list of untried actions

unbacktracked, a stack with the current path

if problem.[S-GOAL(s") then return stop Unbacktracked stores the current path
if s’ is a new state (not in untried) then uniried|s’| + problemn . ACTIONS(s")
if s 1s not null then
result| s, a] + s’
add s to the front of unbacktracked|s')
if untried|s’] is empty then
if unbacktracked|s'] is empty then return stop
else a «+ an action b such that result|s’. b] = POP(unbacktracked|s'])
else a «— POP(unitried|s’])
s+ s
return a

Record found transitions

Keep breadcrumbs to go back
later

Use breadcrumbs to walk back

Case Study: DFS with Backtracking
for an unknown Maze

Unbacktracked
‘ Agent (= current path)

* We don’t have a map
(transition function) of the
maze. We can only see
adjacent squares.

* We cannot plan, so we must

explore by walking around!]
) , untried

* Asimple method is = :
backtracking DFS that only (~ frontier)
stores the current path for
backtracking (on a stack) to
get back to untied actions
when we run into a dead
end (think leaving
breadcrumbs or a string).

* This is an iterative The
impf!ementatiorr: %f(IjDFS
without a reached data "
structure. U?]backtaceclj transition
represents the currently . .
explored path, and untried function is

represents the frontier. DFS unknown
memory management '
applies.

Important concepts that you
should be able to explain and
use Now...

* Difference between solution types:
a. a fixed action sequence (a plan),

b. aconditional plan (also called a strategy or
policy), and

c. exploration.
* What are belief states?

* How actions can be used to coerce the world into
known states.

* How actions and observations (from percept
functions) can be used to learn about the state: State
estimation with repeated predict and update steps.

* The use of AND-OR trees to solve small problems.

* Large problems are hard!

	CS 5/7320 �Artificial Intelligence��Search with Uncertainty�AIMA Chapters 4.3-4.5
	Recap: Solving Search Problems under Certainty
	Sources and Consequence �of Uncertainty
	Types of uncertainty in the environment*
	Nondeterministic Actions
	Definition: Nondeterministic Actions
	Example:�Erratic Vacuum World
	Example: �Erratic Vacuum World
	Transition Model as an AND-OR Search Tree
	Search the AND-OR Tree
	Recursive AND-OR Tree Search (DFS)
	An Agent using the Conditional Plan
	Search With �No Observations
	Sensorless Problems
	Definition: Belief State
	Actions to Coerce the �World into Known States
	Actions to Coerce the �World into Known States
	Actions to Coerce the �World into Known States
	The Reachable Belief State Space
	Finding a Plan
	Case Study
	Partially Observable Environments
	Percepts and Observability
	Use Observations to Learn About the State
	Example: Deterministic local sensing vacuum world
	Solving Partially Observable Problems
	Solving Partially Observable Problems 2
	Solving Partially Observable Problems 3
	Solving Partially Observable Problems 4
	State Estimation and �Approximate Belief States
	Case Study: ��Partially Observable 8-Puzzle
	Partially Observable 8-Puzzle
	Exploration
	Recap: Offline Search
	Online Search
	Design Considerations for�Online Search
	Online Search: A Model-based Reflex Agent to Learn the Transition Model
	Case Study: DFS with Backtracking for an unknown Maze
	Important concepts that you should be able to explain and use now…

