
CS 5/7320
Artificial Intelligence

Adversarial Search
and Games
AIMA Chapter 5

Slides by Michael Hahsler
with figures from the AIMA textbook

Image: "Reflected Chess pieces"
by Adrian Askew Online Material

This work is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License.

https://www.flickr.com/photos/58182080@N04/6918664049
https://www.flickr.com/photos/58182080@N04
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Contents

Games as
Search Problems

Exact Methods

Non-
deterministic

Actions

 Minimax Search

Heuristic
Methods

Heuristic Alpha-
Beta Tree Search

Monte Carlo Tree
search

Stochastic Games

Games

• Strategic environment: Games typically feature an
environment containing an opponent who wants to
win against the agent.

• Episodic environment: One game does not affect
the next.

• We will focus on planning for
• two-player zero-sum games with
• deterministic game mechanics and
• perfect information (i.e., fully observable environment).

• We call the two players:
1) Max tries to maximize its utility.
2) Min tries to minimize Max’s utility (zero-

sum game).

Definition of a Game

Definition:
𝑠𝑠0 The initial state (position, board, hand).
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑠𝑠) Legal moves in state 𝑠𝑠.
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑠𝑠, 𝑎𝑎) Transition model.
𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑠𝑠) Test for terminal states.
𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈(𝑠𝑠) Utility for player Max for terminal states.

Example: Tic-tac-toe

𝑠𝑠0 Empty board.
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑠𝑠) Play empty squares.
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑠𝑠, 𝑎𝑎) Symbol (x/o) is placed on empty square.
𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑠𝑠) Did a player win or is the game a draw?
𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈(𝑠𝑠) +1 if x wins, -1 if o wins and 0 for a draw.
 Utility is only defined for terminal states.

Here player x is Max
and player o is Min.

Note: This game still uses a goal-based agent that
plans actions to reach a winning terminal state!

Games as Search Problems

• Making a move is a decision problem that can be addressed
as a search problem. We need to search for sequences of
moves that lead to a winning position.

• Search problems have a state space: a graph defined by the
initial state and the transition function containing all
reachable states (e.g., chess positions).

• The search tree is called game tree: A complete game tree
follows every sequence from the current state to the end of
the game (the terminal state). It consists of the set of paths
through the state space representing all possible games that
can be played.

Tic-tac-toe: Partial Game Tree

1

9

9 × 8

of nodes

action / result()

node / state

redundant path

Terminal states
have a known

utility

Note: This game
has no cycles!

The state space size (number of
possible boards) is much smaller
than:

39 = 19,683 states.

However, the complete game tree is
much larger because the same state
(board) can be reached in different
subtrees (redundant paths). The game
tree here is a little smaller than:

1 + 9 × 8 + 9 × 8 × 7 + ⋯ 9!
= 986,409 nodes

Methods for
Adversarial

Games

Exact Methods
• Model as nondeterministic actions: The

opponent is seen as part of an
environment with nondeterministic
actions. Non-determinism is the result of
the unknown moves by the opponent. We
consider all possible moves by the
opponent.

• Find optimal decisions: Minimax search
and Alpha-Beta pruning, where each
player plays optimally to the end of the
game.

Heuristic Methods
(game tree is too large)

• Heuristic Alpha-Beta Tree Search:
a. Cut-off game tree and use a

heuristic for utility.
b. Forward Pruning: ignore poor

moves.

• Monte Carlo Tree search: Estimate the
utility of a state by simulating complete
games and averaging the utility.

Exact Method:
Nondeterministic Actions

Nondeterministic Actions
• The opponent is considered part of the strategic environment.
• Each “round” consists of

a) the deterministic move by the agent, and
b) a non-deterministic response by the opponent (the environment).

Recall: Nondeterministic actions (AIMA Chapter 4)
We can use a stochastic transition model that describes uncertainty
about the opponent's behavior.
Example transition:

 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑠𝑠1, 𝑎𝑎 = 𝑠𝑠2, 𝑠𝑠4, 𝑠𝑠5

i.e., action 𝑎𝑎 in 𝑠𝑠1 can lead to one of several states depending on the
opponents move. This set of states is called a belief state.

Tic-tac-toe: AND-OR Search
We play MAX and decide on our actions (OR).
MIN’s actions introduce non-determinism (AND).

OR (specify 1 action)

OR

AND (consider all outcomes)

AND

Objective: Find a subtree that consists of
• one action for OR nodes and
• all children for AND nodes that
• has only win leaf nodes (utility +1).
Extract a conditional plan from the subtree.

This implies playing optimally.
• MAX: We try to find a move that

guarantees a win (= optimal).
• MIN: We consider all the opponent’s

moves in the AND stage. This includes
MIN’s best (optimal) move.

Recall: AND-OR DFS Search Algorithm

// don’t follow loops

// check all possible actions

// check all possible resulting states

= nested If-then-else statements

Try
agent’s
moves

Go through
opponent

moves

all states that can result
from opponent’s moves

abandon subtree if a loss is possible

Construct a partial conditional plan for the subtree

Optimal Decisions:
Minimax Search

Immediate vs. Long-Term Rewards

The immediate reward of a state is the utility that
the agent receives for being in/getting to that state.

Terminal states: The immediate reward is the
known utility.

Non-terminal states: The immediate reward is 0.
Issue: How good is it to be in a non-terminal state?
We need to complete the game and see. This is
called the (expected) long-term reward of the
state.

The optimal decision is to always choose the action
that leads to the highest long-term reward state.

?

Idea: Minimax Decision

• Assign each state 𝑠𝑠 a minimax value that reflects the utility
realized if both players play optimally from 𝑠𝑠 to the end of
the game (i.e., the long-term reward):

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑠𝑠 =

𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝑠𝑠 if 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑠𝑠)
max

𝑎𝑎∈𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑠𝑠
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑠𝑠, 𝑎𝑎 if 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑀𝑀𝑀𝑀𝑀𝑀

min
𝑎𝑎∈𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑠𝑠

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑠𝑠, 𝑎𝑎 if 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑀𝑀𝑀𝑀𝑀𝑀

• This is a recursive definition which can be solved from
terminal states backwards.

• Optimal decision for Max: Choose the action that leads to
the state with the largest minimax value (highest long-term
reward).

Minimax Search: Back-up
Minimax Values

= minimax value (MV)

1

max

MV MV

MV MV MV MV MV MV MV MV MV

min

1 1

min
…

0

Pick action that leads to the largest MV

Determine Minmax values (MVs)
using a bottom-up strategy

Using MVs
• MAX always picks the action that leads

to the largest value.
• MIN always picks the action that leads

to the smallest value.

Minimax DFS
Approach: Follow tree to each
terminal node and back up
minimax value.

Note: This is just a modification of
the AND-OR Tree Search and
returns the first action of the
conditional plan.

Represents
OR Search

Represents
AND Search

Find the action that
leads to the best value.

Exercise: Simple 2-Ply Game

2 0 5 -5 -2 7 5 -7 4Utility for Max

Max

Min

𝑎𝑎1 𝑎𝑎2 𝑎𝑎3

𝑎𝑎1 𝑎𝑎2
𝑎𝑎3

𝑎𝑎1
𝑎𝑎2

𝑎𝑎3 𝑎𝑎1
𝑎𝑎2

𝑎𝑎3

MV

MV MV MV

• Compute all MV (minimax values).
• What is the optimal action for Max?

Issue: Search Time
• Complexity

Space complexity: 𝑂𝑂 𝑏𝑏𝑏𝑏 - Function call stack + best value/action

Time complexity: 𝑶𝑶 𝒃𝒃𝒎𝒎 - Minimax search is worse than regular DFS for
finding a goal! It traverses the entire game tree using DFS!

• A fast solution is only feasible for very simple games with few
possible moves (=small branching factor) and few moves till the
game is over (=low maximal depth)!

• Example: Time complexity of Minimax Search for Tic-tac-toe
𝑏𝑏 = 9,𝑚𝑚 = 9 → 𝑂𝑂 99 = 𝑂𝑂 387,420,489

 𝑏𝑏 decreases from 9 to 8, 7, … the actual size is smaller than:
1 9 9 × 8 9 × 8 × 7 … 9! = 986,409 nodes

• We need to reduce the time complexity! → Game tree pruning

b: max. branching factor
m: max. depth of tree

Improvements for
Minimax Search

Alpha-Beta Pruning Search and Move Ordering

Alpha-Beta Pruning Search

• Issue: Minimax search traverses the entire game tree.
• Idea: Do not search parts of the tree if they do not make a

difference to the outcome.
• Observations:

• min(3, 𝑥𝑥, 𝑦𝑦) can never be more than 3.
• max(5, min(3, 𝑥𝑥, 𝑦𝑦, …)) is always 5 and does not depend on the

values of 𝑥𝑥 or 𝑦𝑦.
• Minimax search applies alternating min and max.

• Approach: maintain bounds for the minimax value [𝛼𝛼, 𝛽𝛽].
Prune subtrees (i.e., don’t follow actions) that do not affect
the current minimax value bound.

• Alpha is used by Max and means “𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑠𝑠 will be at least 𝛼𝛼.”
• Beta is used by Min and means “𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑠𝑠 will be at most 𝛽𝛽.”

Example: Alpha-Beta Pruning
Max updates α
(utility is at least)

Min updates 𝛽𝛽
(utility is at most)

Once a subtree is
fully evaluated,
the interval has a
length of 0
(𝛼𝛼 = 𝛽𝛽).

Max

Min

[𝛼𝛼, β]

Min

Min

Max

Max
𝑣𝑣 = 3

Min

Max

Min

Max
𝑣𝑣 = 2

𝑣𝑣 = 3

Utility cannot be
more than 2 in the

subtree, but we
already can get 3

from the first
subtree. Prune the

rest.

Min

Max

𝑣𝑣 ≤ 2

= minimax search + pruning

Abandon subtree if Min would not
go there because it has a better

choice (represented by 𝛽𝛽)

// v is the minimax value

Found a better action?

Found a better action?

Abandon subtree if Max would
not go there because it has a

better choice (represented by 𝛼𝛼)

Exercise: Simple 2-Ply Game
with Alpha-Beta Pruning

• Find the [𝛼𝛼, 𝛽𝛽] intervals for all nodes.
• What is the optimal move sequence?
• What part of the tree can be pruned?

-5 2 5 7 0 2 5 -7 -4Utility for Max

Max

Min

𝑎𝑎1 𝑎𝑎2 𝑎𝑎3

𝑎𝑎1 𝑎𝑎2
𝑎𝑎3

𝑎𝑎1
𝑎𝑎2

𝑎𝑎3 𝑎𝑎1
𝑎𝑎2

𝑎𝑎3

[𝛼𝛼, 𝛽𝛽]

[𝛼𝛼, 𝛽𝛽] [𝛼𝛼, 𝛽𝛽] [𝛼𝛼, 𝛽𝛽]

Max updates α
(utility is at least)

Min updates 𝛽𝛽
(utility is at most)

Move Ordering for Alpha-Beta Pruning

• Idea: Pruning is more effective if good alpha-beta
bounds can be found in the first few checked
subtrees.

• Move ordering for DFS = Check good moves for
Min and Max first.

• This is very similar to Greedy Best-first Search. We
need expert knowledge (a heuristic) to determine
what a good move is.

Exercise: Simple 2-Ply Game with Alpha-
Beta Pruning and Move Ordering

• Find the [𝛼𝛼, 𝛽𝛽] intervals for all nodes using the move ordering.
• What is the optimal move sequence?
• What part of the tree was pruned?

• Assume a heuristic shows that we
should order the moves: 𝑎𝑎2, 𝑎𝑎1, 𝑎𝑎3

Max updates α
(utility is at least)

Min updates 𝛽𝛽
(utility is at most)

-5 2 5 7 0 2 5 -7 -4Utility for Max

Max

Min

𝑎𝑎1 𝑎𝑎2 𝑎𝑎3

𝑎𝑎1 𝑎𝑎2
𝑎𝑎3

𝑎𝑎1
𝑎𝑎2

𝑎𝑎3
𝑎𝑎1

𝑎𝑎2
𝑎𝑎3

[𝛼𝛼, 𝛽𝛽]

[𝛼𝛼, 𝛽𝛽] [𝛼𝛼, 𝛽𝛽] [𝛼𝛼, 𝛽𝛽]

The Effect of
Alpha-Beta Pruning

Method Searched Nodes Search Time

Minimax Search 549,946 13 s

+ Alpha-Beta Pruning 18,297 660 ms

+ Move ordering
 (heuristic: center, corner, rest)

7,275 202 ms

Tic-tac-toe

Issue With Minimax Search

• Optimal decision-making algorithms scale poorly
for large game trees.

• Alpha-beta pruning and move ordering are often
not sufficient to reduce the search time.

• Fast approximate methods are needed.
We may lose the optimality guarantee, but we can
work with larger problems.

Heuristic Methods
Heuristic Alpha-Beta

Tree Search

Heuristic Alpha-Beta Tree Search

Issue: The game tree is too large to use optimal
Alpha-Beta Search.

Approach: Search only part of the tree by replacing
missing information using a heuristic evaluation
function.

Options:
a. Cut off game tree and use a heuristic for utility.
b. Forward Pruning: ignore poor moves.

Option A: Heuristic Cut Off Search
Reduce the search cost by restricting the search depth:
1. Stop search at a non-terminal node.
2. Use a heuristic evaluation function 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑠𝑠 to approximate the utility based

on features of the state.

Needed properties of the evaluation function:
 Fast to compute.
 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑠𝑠 ∈ 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 , 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝑤𝑤𝑤𝑤𝑤𝑤
 Correlated with the actual chance of winning.

Examples:
1. A weighted linear function

 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑠𝑠 = 𝑤𝑤1𝑓𝑓1 𝑠𝑠 + 𝑤𝑤2𝑓𝑓2 𝑠𝑠 + ⋯+ 𝑤𝑤𝑛𝑛𝑓𝑓𝑛𝑛(𝑠𝑠)

where 𝑓𝑓𝑖𝑖 is a feature of the state (e.g., # of pieces captured in chess).
2. A deep neural network (or other ML method) trained on complete games.

Heuristic Alpha-Beta Tree Search:
Cut Off Search

Eval Eval Eval Eval = heuristic to estimate of the minimax
value/utility of the state.

HMV HMV HMV HMV HMV HMV HMV HMV HMV

HMV = heuristic minimax value

1

2

3

Depth (ply)
0

Cu
t s

ea
rc

h
of

f a
t d

ep
th

 =
2

This is also called: search
with a “look ahead” of 2

Pick the action with
 the highest HMV

Option B: Heuristic Forward Pruning

Idea: Focus search on good moves (= prune the others).

There are many ways in which quality can be evaluated:
• Low heuristic evaluation value.
• Low heuristic minimax value after shallow search (cut-off

search).
• Past experience.

Beam search: Focus on the 𝑛𝑛 best moves at every layer in
the game tree.

Issue: May prune important moves.

Heuristic Alpha-Beta Tree Search:
Example for Forward Pruning

Cu
t s

ea
rc

h
of

f a
t d

ep
th

 =
2

xx x xxx

x … prune low HMV actions

Eval Eval Eval

HMV HMV HMV HMV HMV HMV HMV HMV HMV

Continue alpha-beta
search on these.

1. Perform Cut-off search.
2. Choose the n best actions

using the heuristic minimax
value and prune the rest.

3. Explore the chosen actions
using heuristic Alpha-Beta
Tree search.

Important Considerations

• Designing a good evaluation heuristic can be difficult.
• We need expert knowledge.
• Experimentation may be needed to choose the best

heuristic.

• The cutoff depth affects the runtime and the quality of
the found move.

• Low cutoff: Fast, but the approximation of the evaluation
function will be poor.

• Intermediate cutoff: Slower because a larger tree needs to be
searched, but the evaluation function will work better.

• Infinity (= no cutoff): The algorithm reverts to complete
minimax search and optimal decisions.

Heuristic Methods
Monte Carlo Tree Search

(MCTS)

Idea of Monte Carlo Search
“Monte Carlo simulation is a computational technique that uses repeated random
sampling to obtain numerical results, often used to model uncertain events or
systems where outcomes are difficult to predict deterministically.” [Wikipedia]

• Approximate 𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 𝒔𝒔 as the average utility of several playouts (= simulated
games).

• Playout policy: How to choose moves during the simulation runs?
Example playout policies:

• Random.
• Heuristics for good moves developed by experts.
• Learn a good playout policy from self-play (e.g., with deep neural networks).

We will discuss this further when we cover “Learning from Examples.”

• Typically used for problems with
• High branching factor (many possible moves make the tree very wide).
• Unknown or hard to define evaluation functions.

Pure Monte Carlo Search
• Goal: Find the best next move.
• Method

1. Simulate 𝑁𝑁 playouts from the current state using a random playout policy.
2. Track which move has the highest win percentage (or largest expected utility)

in its subtree.

• Optimality Guarantee: Converges to optimal play for stochastic games as
𝑁𝑁 increases.

• Typical strategy for 𝑁𝑁 : Do as many playouts as you can given the available
time budget for the move.

Start playouts

Estimate win
probability

#wins/playouts 0.54 0.50 0.62 0.57 0.78 0.52 0.38 0.65 0.14

0.61

Monte Carlo Tree Search (MCTS)

Pure Monte Carlo search always starts playouts from a given
state (or randomly from its children).

Issue: Many playouts are performed for very bad moves.

Idea: Focus on sequences of good moves.

We will introduce
a) UCB1 to select a good move to play out next.
b) A tree to deal with short sequences of moves.

Playout Selection Strategy

Issue: Pure Monte Carlo Search with a random playout policy spends a lot of time to create
playouts for bad move.

Better: Select the starting state for playouts to focus on important parts of the game tree (i.e., good
moves).
This presents the following tradeoff:

Exploration: perform more playouts
from states that currently have no or few

playouts.

Exploitation: more playouts for states that have
done well to get more accurate estimates.

For the empty board,
Max can start a

playout at any of
these states. Which

one should it choose?

Upper Confidence Bound 1 (UCB1)
Applied to Trees (UCT)

𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝑛𝑛 = 𝑈𝑈 𝑛𝑛
𝑁𝑁 𝑛𝑛

+ 𝐶𝐶 log 𝑁𝑁(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑛𝑛)
𝑁𝑁(𝑛𝑛)

𝑛𝑛 … node in the game tree
𝑈𝑈 𝑛𝑛 … total utility of all playouts going through node n
𝑁𝑁 𝑛𝑛 … number of playouts through n

Average utility
(=exploitation)

Tradeoff constant ≈ 2
can be optimizes using experiments

High for nodes with few playouts relative to the
parent node (=exploration). Goes to 0 for large 𝑁𝑁(𝑛𝑛)

Selection strategy: Select node with highest UCB1 score.

Trees in MCTS

Monte Carlo Tree Search builds a partial game tree
representing short sequences of the next few moves.

Playouts can start from any state (leaf node) in that tree. This
means the algorithm can focus on a good sequence of moves.

Important considerations:
• We typically can only store a small part of the game tree, so

we do not store the complete playout runs.
• We can use UCB1 as the selection strategy to decide what

part of the tree we should focus on for the next playout.
This balances exploration and exploitation.

White

White

White

Black

Black

UCB1 selection favors win
percentage more and more.

Wins/Playouts

Highest UCB1 score

Select leaf with
highest UCB1 score Expand and Simulate: the simulation path is

not recorded to preserve memory!

(update counts)

Fi
rs

t f
ew

 le
ve

ls

Advantage over pure MCS:
Selection strategically
focuses search

Some Considerations

• Estimating the value of a position using simple playouts is
very effective and typically beats many other methods.

• Playouts can be done in parallel (multi-core or on multiple
machines).

• MCTS selects playouts strategically by using UCB1 playout
selection and looking several moves ahead.

• Note: Random playouts may not work well, and a better
playout policy can help.

• Slow Convergence. Playouts may be wasted on playing very bad
(random) moves that nobody would ever play.

• Random play makes discovering long-term strategies very unlikely.

Stochastic Games
Games With Random Events

Stochastic Games

• Game includes a “random action” 𝑟𝑟 (e.g., dice, dealt cards)
• Add chance nodes that calculate the expected value.

Backgammon: Move checker
pieces according to the dice.

MAX has just rolled 6 + 5

move

Expectiminimax
• Game includes a “random action” 𝑟𝑟 (e.g., dice, dealt cards).
• For chance nodes we calculate the expected minimax value.

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑠𝑠 =
 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝑠𝑠 if 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑠𝑠)

max
𝑎𝑎∈𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑠𝑠

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑠𝑠, 𝑎𝑎 if 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑀𝑀𝑀𝑀𝑀𝑀

min
𝑎𝑎∈𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑠𝑠

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑠𝑠, 𝑎𝑎 if 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑀𝑀𝑀𝑀𝑀𝑀

�
𝑟𝑟
𝑃𝑃(𝑟𝑟)𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑠𝑠, 𝑟𝑟 if 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

• Options:
• Use Minimax algorithm. Issue: Search tree size explodes if the number of

“random actions” is large. Think of drawing cards for poker!
• Heuristic Expectiminimax Search: Cut-off search and with an evaluation

function.

MCTS for Stochastic Games

Monte Carlo Tree Search can be directly applied to
stochastic games: Random actions can be easily
added to playouts.

Issue: Random actions result in a significantly larger
game tree.

• Requires a much larger number of playouts to converge
to good solutions.

• The tree cannot be very deep because the random
actions make it very wide.

Conclusion

Nondeterministic actions:
• The opponent is seen as part of an

environment with nondeterministic
actions. Non-determinism is the
result of the unknown moves by the
opponent. All possible moves are
considered.

Optimal decisions:
• Minimax search and Alpha-Beta

pruning where each player plays
optimal to the end of the game.

• Choice nodes and Expectiminimax for
stochastic games.

Heuristic Alpha-Beta Tree Search:
• Cut off game tree and use heuristic

evaluation function for utility (based
on state features).

• Forward Pruning: ignore poor moves.
• Learn heuristic from data using MCTS

Monte Carlo Tree search:
• Simulate complete games and

calculate proportion of wins.
• Use modified UCB1 scores to expand

the partial game tree.
• Learn playout policy using self-play

and deep learning.

Scale only for tiny problem
s!

State of the Art

	CS 5/7320 �Artificial Intelligence���Adversarial Search and Games�AIMA Chapter 5
	Contents
	Games
	Definition of a Game
	Example: Tic-tac-toe
	Games as Search Problems
	Tic-tac-toe: Partial Game Tree
	Methods for Adversarial Games
	Exact Method:�Nondeterministic Actions
	Nondeterministic Actions
	Tic-tac-toe: AND-OR Search
	Recall: AND-OR DFS Search Algorithm
	Optimal Decisions: �Minimax Search
	Immediate vs. Long-Term Rewards
	Idea: Minimax Decision
	Minimax Search: Back-up Minimax Values
	Minimax DFS
	Exercise: Simple 2-Ply Game
	Issue: Search Time
	Improvements for �Minimax Search
	Alpha-Beta Pruning Search
	Example: Alpha-Beta Pruning
	Alpha-Beta-Search Algorithm
	Exercise: Simple 2-Ply Game with Alpha-Beta Pruning
	Move Ordering for Alpha-Beta Pruning
	Exercise: Simple 2-Ply Game with Alpha-Beta Pruning and Move Ordering
	The Effect of �Alpha-Beta Pruning
	Issue With Minimax Search
	Heuristic Methods
	Heuristic Alpha-Beta Tree Search
	Option A: Heuristic Cut Off Search
	Heuristic Alpha-Beta Tree Search:�Cut Off Search
	Option B: Heuristic Forward Pruning
	Heuristic Alpha-Beta Tree Search:�Example for Forward Pruning
	Important Considerations
	Heuristic Methods
	Idea of Monte Carlo Search
	Pure Monte Carlo Search
	Monte Carlo Tree Search (MCTS)
	Playout Selection Strategy
	Upper Confidence Bound 1 (UCB1) �Applied to Trees (UCT)
	Trees in MCTS
	Monte-Carlo-Tree-Search Algorithm
	Some Considerations
	Stochastic Games
	Stochastic Games
	Expectiminimax
	MCTS for Stochastic Games
	Conclusion

