CS5/7320

Artificial Intelligence

Adversarial Search

and Games
AIMA Chapter 5

Slides by Michael Hahsler
with figures from the AIMA textbook

. ()

‘ --

VS

Ly ..] - s
(@) 55T

This work is licensed under a Creative Commons Image: "Reflected Chess pieces" *ea'2 :
By SA Attribution-ShareAlike 4.0 International License. by Adrian Askew Online Material

https://www.flickr.com/photos/58182080@N04/6918664049
https://www.flickr.com/photos/58182080@N04
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Contents

Games as

Search Problems

/ Exact Methods\

Non-
deterministic
Actions

kMinimax Searcfy

/ Heuristic

Methods

Heuristic Alpha-
Beta Tree Search

Monte Carlo Tree
search

-

N

~

Stochastic Games

/

. Games

 Strategic environment: Games typically feature an
environment containing an opponent who wants to
win against the agent.

* Episodic environment: One game does not affect
the next.

* We will focus on planning for
* two-player zero-sum games with
* deterministic game mechanics and
» perfect information (i.e., fully observable environment).

* We call the two players:
1) Max tries to maximize its utility.

2) Min tries to minimize Max’s utility (zero-
sum game).

Definition of a Game

Definition:
So
Actions(s)
Result(s,a)
Terminal(s)
Utility(s)

(Yt .

-

é
)
.

i
)
&
j

The initial state (position, board, hand).
Legal moves in state s.

Transition model.

Test for terminal states.

Utility for player Max for terminal states.

Example: Tic-tac-toe 3

X|R|e

Xlo

So Empty board.

Actions(s) Play empty squares.

Result(s,a) Symbol (x/0) is placed on empty square.
Terminal(s) Did a player win or is the game a draw?
Utility(s) +1 if x wins, -1 if o wins and O for a draw.

Utility is only defined for terminal states.

Here player x is Max
and player o is Min.

Note: This game still uses a goal-based agent that

plans actions to reach a winning terminal state!

Games as Search Problems

* Making a move is a decision problem that can be addressed
as a search problem. We need to search for sequences of
moves that lead to a winning position.

» Search problems have a state space: a graph defined by the
initial state and the transition function containing all
reachable states (e.g., chess positions).

* The search tree is called game tree: A complete game tree
follows every sequence from the current state to the end of
the game (the terminal state). It consists of the set of paths
through the state space representing all possible games that
can be played.

Tic-tac-toe: Partial Game Tree
of nodes
MAX (%) action / result() 1
I .

- —
X X X T
MIN (o)
Y
X0
MAX (X) ;
The state space size (number of
¢ possible boards) is much smaller
s} - than:
MIN (o) 3% = 19,683 states.
Terminal states Y However, the complete game tree is
have a I.<nown : " | e much larger because the same state
utility ‘ (board) can be reached in different
X0 X X e subtrees (redundant paths). The game
0
TERMINAL) tree here is a little smaller than:
Utility -1 1+ (9% 8)+(9%x8x%x7)+--(9)

= 986,409 nodes

Exact Methods

* Model as nondeterministic actions: The
opponent is seen as part of an
environment with nondeterministic
actions. Non-determinism is the result of
the unknown moves by the opponent. We
consider all possible moves by the
opponent.

* Find optimal decisions: Minimax search

I\/l et h Od S fo r and Alpha-Beta pruning, where each

player plays optimally to the end of the
game.

Adversarial

CEINES Heuristic Methods

(game tree is too large)

* Heuristic Alpha-Beta Tree Search:

a. Cut-off game tree and use a
heuristic for utility.

b. Forward Pruning: ignore poor
moves.

* Monte Carlo Tree search: Estimate the
utility of a state by simulating complete
games and averaging the utility.

[T

Nond

Nondeterministic Actions

 The opponent is considered part of the strategic environment.

e Each “round” consists of
a) the deterministic move by the agent, and
b) a non-deterministic response by the opponent (the environment).

Recall: Nondeterministic actions (AIMA Chapter 4)
We can use a stochastic transition model that describes uncertainty

about the opponent's behavior.
Example transition:

Results(s;,a) = {s,,S4, Ss}

i.e., action a in s; can lead to one of several states depending on the
opponents move. This set of states is called a belief state.

Tic-tac-toe: AND-OR Search

We play MAX and decide on our actions (OR).
MIN’s actions introduce non-determinism (AND).

MAX (X)

MIN (o)

MAX (X)

MIN (0)

TERMINAL

Utility

9 -action)

X

X X

x
O |-

O [~-—

x| X

Objective: Find a subtree that consists of

* one action for OR nodes and

e all children for AND nodes that

* has only win leaf nodes (utility +1).
Extract a conditional plan from the subtree.

This implies playing optimally.

* MAX: We try to find a move that
guarantees a win (= optimal).
MIN: We consider all the opponent’s
moves in the AND stage. This includes
MIN’s best (optimal) move.

Recall: AND-OR DFS Search Algorithm

i - nested If-then-else statements

function AND-OR-SEARCH(problem) returns a conditional p/lan. or failure
return OR-SEARCH(problem, problem .INITIAL, [])

function OR-SEARCH(problem. state, path) returns a conditional plan. or failure
if problem.1S-GOAL(state) then return the empty plan
if IS-CYCLE(path) then return failure
for each action in problem.ACTIONS(state) do
plan < AND-SEARCH(problem, RESULTS(state, action), [state] + path])
if plan # failure then return [action]| + plan]
return failure

all states that can result

from opponent’s moves

function AND-SEARCH(problem, states. path) returns a conditional plan, or failure
for each s; in states do
plan; <~ OR-SEARCH(problem, s;, path)

if plan, = failure then return failure— abandon subtree if a loss is possible B
; , :

return [if s, then plan, else if sy then plan, else ...if s,_; then plan,_, else plan_ |

\ _

q

Try
agent’s
moves

Glo through

bpponent
moves

\ Construct a partial conditional plan for the subtree

Immediate vs. Long-Term Rewards

MAX (X)
____ﬁ_d____——f“"____‘::i}_ﬁ l_:_:::::::::‘:_““‘“———_
T X X 1 0
MIN (o) X X X
| X X X
}“; = The immediate reward of a state is the utility that
MAX (X) ﬁ B the agent receives for being in/getting to that state.
*\ - Terminal states: The immediate reward is the
MIN (o) XOLX in . known utility.
v N Non-terminal states: The immediate reward is 0.
Issue: How good is it to be in a non-terminal state?
‘ ¢ We need to complete the game and see. This is
SRS [called the (expected) long-term reward of the
TERMINAL o[X| [0]O[X state.
0 X/ X0
Utlity -1 0 The optimal decision is to always choose the action

that leads to the highest long-term reward state.

ldea: Minimax Decision

* Assign each state s a minimax value that reflects the utilit

realized if both Elayers play optimally from s to the end o
the game (i.e., the long-term reward):

(Utility(s) if terminal(s)
Minimax(s) = < aEAE?i%g(ls(s) M mlmax(Result(s, a)) if move = Max
min M inimax(Result(s, a)) if move = Min

. a€Actions(s)

e This is a recursive definition which can be solved from
terminal states backwards.

* Optimal decision for Max: Choose the action that leads to

the state with the largest minimax value (highest long-term
reward).

Minimax Search: Back-up
Minimax Values

MAX (X)

MIN (o)
min

MAX (X)
max

MIN (o)

min

TERMINAL

Utility

o[x| [X[o]x 3)
o[X| |[o[o[X X
[s) X[x/o| [Xo
—1 0 +1

Determine Minmax values (MVs)
using a bottom-up strategy

Using MVs

* MAX always picks the action that leads
to the largest value.
MIN always picks the action that leads
to the smallest value.

= minimax value (MV)

Minimax DFS

function MINIMAX-SEARCH(game. state) returns an action
player < game.TO-MOVE(state)
value, move < MAX-VALUE(game, state)
return move

function MAX-VALUE(game. state) returns a (utility. move) pair

if game.IS-TERMINAL(state) then return game UTILITY(state, player). null

Approach: Follow tree to each
terminal node and back up
minimax value.

Note: This is just a modification of
the AND-OR Tree Search and
returns the first action of the
conditional plan.

V4 —00
for each a in game.ACTIONS(state) do || Represents
v2, a2 + MIN-VALUE(game. game.RESULT(state. a)) OR Search
if v2 > v then
v. move «— v2. a Find the action that
return v. move leads to the best value. |
function MIN-VALUE(game, state) returns a (utility, move) pair R
if game.1S-TERMINAL(state) then return game UTILITY(state, player), null
V 4— 400
for each a in game.ACTIONS(state) do - ,ile\lFl)DreSSeeanrtcsh
v2, a2 + MAX-VALUE(game, game.RESULT(state, a))
if v2 < v then
U, move +— v2, a

return v. move

Exercise: Simple 2-Ply Game

Min

Utility for Max 2

* Compute all MV (minimax values).
* What is the optimal action for Max?

Issue: Search Time

b: max. branching factor

m: max. depth of tree

Complexity
Space complexity: O(bm) - Function call stack + best value/action

Time complexity: O0(b™) - Minimax search is worse than regular DFS for
finding a goal! It traverses the entire game tree using DFS!

A fast solution is only feasible for very simple games with few
possible moves (=small branchinghfactor) and few moves till the
game is over (=low maximal depth)!

Example: Time complexity of Minimax Search for Tic-tac-toe
b =9m =9 - 0(9°) = 0(387,420,489)

b decreases from 9 to 8, 7, ... the actual size is smaller than:
1(9)(9 x 8)(9 x 8 x7)...(9!) = 986,409 nodes

We need to reduce the time complexity! — Game tree pruning

AR

MPIeVeE Sles for
-

VIRIMEXESEaTr G
il

—
E —

AIPNEEELIERUNINEISEarchEena [V 9\/» Clfelaifin

_—

—————

—

Alpha-Beta Pruning Search

* Issue: Minimax search traverses the entire game tree.

* Idea: Do not search parts of the tree if they do not make a
difference to the outcome.

* Observations:
* min(3, x,y) can never be more than 3.

* max(5,min(3,x,y,...)) is always 5 and does not depend on the
values of x or y.

* Minimax search applies alternating min and max.

* Approach: maintain bounds for the minimax value |«, ,BT].
Prune subtrees (i.e., don’t follow actions) that do not affect
the current minimax value bound.

* Alpha is used by Max and means “Minimax(s) will be at least a.”
* Beta is used by Min and means “Minimax(s) will be at most 8.”

Example: Alpha-Beta Pruning

[a, B] Max updates o
Max (b) [o, +] A Max (utility is at least)

[oo, +0]

Min updates 8
(utility is at most)

Utility cannot be
more than 2 in the
subtree, but we
already can get 3
from the first

subtree. Prune the
rest.

(e) 3, i 3. 3] Once a subtree is
fully evaluated,
[3.3 . . i 3.3 2] 6 ' i the interval has a
length of O
(@ = B).

function ALPHA-BETA-SEARCH(game, state) returns an action = minimax search + pruning

player + game. TO-MOVE(state)
value, move +— MAX-VALUE(game, state, —00, +00)
refurn mowve

function MAX-VALUE(game, state, o, 3) returns a (utility, move) pair
if game.IS-TERMINAL(state) then return game.UTILITY(state, player), null
V4— —00 // v is the minimax value
for each a in game.ACTIONS(state) do
v2, a2 + MIN-VALUE(game, game.RESULT(state, a), o, 3)

ifv2 > v then Found a better action?
v, _move - v2_a

o +— MAX(o, v)
if v = [then return v, move
return v, mouve

Abandon subtree if Min would not
go there because it has a better

choice (represented by)

function MIN-VALUE(game, state, c, §) returns a (utility. move) pair
if game.IS-TERMINAL(state) then return game.UTILITY(state, player), null
U4 +00
for each a in game. ACTIONS(state) do
v2, a2 + MAX-VALUE(game, game.RESULT(state, a), a, [3)
if v2 < v then
v, move +— v2, a
3+ MIN(S, v)
if v_< a then return v, move
return v, move

Found a better action?

Abandon subtree if Max would
not go there because it has a
better choice (represented by a)

Exercise: Simple 2-Ply Game [EEEEE

(utility is at least)

with Alpha-Beta Pruning

[, B]

Min updates 8
(utility is at most)

Min

Utility for Max -5

* Find the [a,] intervals for all nodes.
* What is the optimal move sequence?
* What part of the tree can be pruned?

Move Ordering for Alpha-Beta Pruning

 Idea: Pruning is more effective if good alpha-beta
bounds can be found in the first few checked
subtrees.

* Move ordering for DFS = Check good moves for
Min and Max first.

* This is very similar to Greedy Best-first Search. We
need expert knowledge (a heuristic) to determine
what a good move is.

. e _ . _ Max updates a
Exercise: Simple 2-Ply Game with Alpha (utility i at least)

Beta Pruning and Move Ordering
Min updates 8
(utility is at most)

* Assume a heuristic shows that we
should order the moves: a,, aq, as [a, B]

Min

Utility for Max -5

* Find the [a, 8] intervals for all nodes using the move ordering.
* What is the optimal move sequence?
* What part of the tree was pruned?

The Effect of
Alpha-Beta Pruning ¢

Xlo

). ¢
O

Tic-tac-toe

Minimax Search 549,946 13 s
+ Alpha-Beta Pruning 18,297 660 ms
+ Move ordering 7,275 202 ms

(heuristic: center, corner, rest)

Issue With Minimax Search

* Optimal decision-making algorithms scale poorly
for large game trees.

* Alpha-beta pruning and move ordering are often
not sufficient to reduce the search time.

* Fast approximate methods are needed.
We may lose the optimality guarantee, but we can
work with larger problems.

Heuristic Alpha-Beta Tree Search

Issue: The game tree is too large to use optimal
Alpha-Beta Search.

Approach: Search only part of the tree by replacing
missing information using a heuristic evaluation
function.

Options:
a. Cut off game tree and use a heuristic for utility.
b. Forward Pruning: ignore poor moves.

Option A: Heuristic Cut Off Search

Reduce the search cost by restricting the search depth:
1. Stop search at a non-terminal node.

2. Use a heuristic evaluation function Eval(s) to approximate the utility based
on features of the state.

Needed properties of the evaluation function:
= Fast to compute.
» Eval(s) € [Utility(loss), Utility(win)]
= Correlated with the actual chance of winning.

Examples:
1. A weighted linear function
Eval(s) = wyf1(s) + wafo(s) + -+ + wy f(s)
where f; is a feature of the state (e.g., # of pieces captured in chess).
2. A deep neural network (or other ML method) trained on complete games.

Heuristic Alpha-Beta Tree Search:
Cut Off Search

Depth (ply)
0 MAX (X Pick the action with
the highest HMV

I

—— —
|
| iy

1 MIN (o) BV

| :

X0 3
2 MAX (X ﬁy :]

. Eval = heuristic to estimate of the minimax
value/utility of the state.

w —————— — e o es T pan m Em Em E En B S B B M B B B B M B B M B e e e e e
f' \ X0

% 3 MIN (U e~

‘c'u' A

z oy ;

= X[o[x]|_p4olx| [X[0 e

o TERMINAL __ZefX [0[o[X| | |X -

it 0 X[X|o| [X|0o]o This is also called: search

3 Utlity 1 0 1 with a “look ahead” of 2

Option B: Heuristic Forward Pruning

Idea: Focus search on good moves (= prune the others).

There are many ways in which quality can be evaluated:

* Low heuristic evaluation value.

* Low heuristic minimax value after shallow search (cut-off
search).

* Past experience.

Beam search: Focus on the n best moves at every layer in
the game tree.

Issue: May prune important moves.

Heuristic Alpha-Beta Tree Search:
Example for Forward Pruning

MAX (X) X ... prune low HMV actions

XX KX
MIN (o el Y b] e e 1;1% H{|yl

Continue alpha-beta
search on these.

xS

. Perform Cut-off search.

. Choose the n best actions
using the heuristic minimax
value and prune the rest.

. Explore the chosen actions

using heuristic Alpha-Beta
TERMINAL
Tree search.

Utility

Important Considerations

* Designing a good evaluation heuristic can be difficult.
* We need expert knowledge.

* Experimentation may be needed to choose the best
heuristic.

The cutoff depth affects the runtime and the quality of
the found move.

* Low cutoff: Fast, but the approximation of the evaluation
function will be poor.

* Intermediate cutoff: Slower because a larger tree needs to be
searched, but the evaluation function will work better.

* Infinity (= no cutoff): The al§orithm reverts to complete
minimax search and optimal decisions.

Heuristic Methods

Monte Carlo Tree Search
(MCTS)

ldea of Monte Carlo Search

“Monte Carlo simulation is a computational technique that uses repeated random
sampling to obtain numerical results, often used to model uncertain events or
systems where outcomes are difficult to predict deterministically.” [Wikipedia]

. ApprO))(imate Eval(s) as the average utility of several playouts (= simulated
games).

* Playout policy: How to choose moves during the simulation runs?
Example playout policies:
 Random.
* Heuristics for good moves developed by experts.

* Learnagood plaxout policy from self-play (e.g., with deep neural networks).
We will discuss this further when we cover “Learning from Examples.”

* Typically used for problems with
* High branching factor (many possible moves make the tree very wide).
* Unknown or hard to define evaluation functions.

Pure Monte Carlo Search

e Goal: Find the best next move.

* Method
1. Simulate N playouts from the current state using a random playout policy.
2. Track which move has the highest win percentage (or largest expected utility)

in its subtree.
; Start playouts

MAX (%)

111061
. ‘x“;,";/ Y XH““L - Estimate win
MIN (o X X X probability

X X Al
#wins/playouts 0.54 050 0.62 057 078 052 038 065 0.14

* Optimality Guarantee: Converges to optimal play for stochastic games as
N increases.

* Typical strategy for N : Do as many playouts as you can given the available
time budget for the move.

Monte Carlo Tree Search (MCTS)

Pure Monte Carlo search always starts playouts from a given
state (or randomly from its children).

Issue: Many playouts are performed for very bad moves.
ldea: Focus on sequences of good moves.
We will introduce

a) UCB1 to select a good move to play out next.

b) A tree to deal with short sequences of moves.

Playout Selection Strategy

For the empty board,

MAX (¥ oo Max can start a
L { e playout at any of
MIN|(0) [5 X x - = these states. Which
X X A

one should it choose?

Issue: Pure Monte Carlo Search with a random playout policy spends a lot of time to create
playouts for bad move.

Better:) Select the starting state for playouts to focus on important parts of the game tree (i.e., good
moves).

This presents the following tradeoff:
Exploration: perform more playouts

from states that currently have no or few
playouts.

Exploitation: more playouts for states that have
done well to get more accurate estimates.

Upper Confidence Bound 1 (UCB1)
Applied to Trees (UCT)

Tradeoff constant ~ /2

can be optimizes using experiments

UCB1(n) = u(n) C\/log N(Parent(n))

Average utility High for nodes with few playouts relative to the
(=exploitation) parent node (=exploration). Goes to O for large N(n)

n ... node in the game tree
U(n) ... total utility of all playouts going through node n
N(n) ...number of playouts through n

Selection strategy: Select node with highest UCB1 score.

Trees In MCTS

Monte Carlo Tree Search builds a partial game tree
representing short sequences of the next few moves.

Playouts can start from any state (leaf node) in that tree. This
means the algorithm can focus on a good sequence of moves.

Important considerations:

* We typically can only store a small part of the game tree, so
we do not store the complete playout runs.

* We can use UCB1 as the selection strategy to decide what
part of the tree we should focus on for the next playout.
This balances exploration and exploitation.

function MONTE-CARLO-TREE-SEARCH(stafe) returns an action
tree +—— NODE(state)

while IS-TIME-REMAINING() do

leaf + SELECT(tree) Highest UCB1 score UCB1 selection favors win
child + EXPAND(leaf)

percentage more and more.

result «+ SIMULATE(child)
BACK-PROPAGATE(result, child)

return the move in ACTIONS(state) whose|node has highest number of playouts

White

Black

White

First few levels

Black

White

(a) Selection (b) Expansion (c) Backpropagation
. and simulation (update counts)
black wins

Select leaf with

highest UCB1 score

Advantage over pure MCS:

focuses search

not recorded to preserve memory!

Some Considerations

Estimating the value of a position using simple playouts is
very effective and typically beats many other methods.

Playouts can be done in parallel (multi-core or on multiple
machines).

MCTS selects playouts strategically by using UCB1 playout
selection and looking several moves ahead.

Note: Random playouts may not work well, and a better
playout policy can help.
* Slow Convergence. Playouts may be wasted on playing very bad
(random) moves that nobody would ever play.

 Random play makes discovering long-term strategies very unlikely.

Stochasti¢c Games

Games With Random Events

Stochastic Games

 Game includes a “random action” r (e.g., dice, dealt cards)
* Add chance nodes that calculate the expected value.

MAX has just rolled 6 + 5
0 1 3 4 5 6 7 8 9 10 11 12
MAX

1 ‘-' WW WY .""‘""“'-

it I

N

i

[N | S | S | S A-L 7|
25 24 23 22 21 20 19 18 17 16 15 14 13

Backgammon: Move checker
pieces according to the dice.

TERMINAL 2 -l 1 -1 1

Expectiminimax

 Game includes a “random action” r (e.g., dice, dealt cards).
* For chance nodes we calculate the expected minimax value.

Expectiminimax(s) =

(Utility(s) if terminal(s)
max Expectiminimax(Result(s, a)) if move = Max

a€Actions(s)
< _ min Expectiminimax(Result(s, a)) if move = Min
z P(r)Expectiminimax(Result(s, r)) if move = Chance
\ &I
* Options:

* Use Minimax algorithm. Issue: Search tree size explodes if the number of
“random actions” is large. Think of drawing cards for poker!

* Heuristic Expectiminimax Search: Cut-off search and with an evaluation
function.

MCTS for Stochastic Games

Monte Carlo Tree Search can be directly applied to
stochastic games: Random actions can be easily

added to playouts.

Issue: Random actions result in a significantly larger

game tree.
* Requires a much larger number of playouts to converge
to good solutions.

* The tree cannot be very deep because the random
actions make it very wide.

Conclusion

Nondeterministic actions:

The opponent is seen as part of an
environment with nondeterministic
actions. Non-determinism is the
result of the unknown moves by the
opponent. All possible moves are
considered.

Optimal decisions:

Minimax search and Alpha-Beta
pruning where each player plays
optimal to the end of the game.

Choice nodes and Expectiminimax for
stochastic games.

Heuristic Alpha-Beta Tree Search:

Cut off game tree and use heuristic
evaluation function for utility (based
on state features).

Forward Pruning: ignore poor moves.
Learn heuristic from data using MCTS

Monte Carlo Tree search:

Simulate complete games and
calculate proportion of wins.

Use modified UCB1 scores to expand
the partial game tree.

Learn playout policy using self-play
and deep learning.

jswajqoad Auiy 1o} Ajuo ajeas

1Y 9yl Jo ajels

	CS 5/7320 �Artificial Intelligence���Adversarial Search and Games�AIMA Chapter 5
	Contents
	Games
	Definition of a Game
	Example: Tic-tac-toe
	Games as Search Problems
	Tic-tac-toe: Partial Game Tree
	Methods for Adversarial Games
	Exact Method:�Nondeterministic Actions
	Nondeterministic Actions
	Tic-tac-toe: AND-OR Search
	Recall: AND-OR DFS Search Algorithm
	Optimal Decisions: �Minimax Search
	Immediate vs. Long-Term Rewards
	Idea: Minimax Decision
	Minimax Search: Back-up Minimax Values
	Minimax DFS
	Exercise: Simple 2-Ply Game
	Issue: Search Time
	Improvements for �Minimax Search
	Alpha-Beta Pruning Search
	Example: Alpha-Beta Pruning
	Alpha-Beta-Search Algorithm
	Exercise: Simple 2-Ply Game with Alpha-Beta Pruning
	Move Ordering for Alpha-Beta Pruning
	Exercise: Simple 2-Ply Game with Alpha-Beta Pruning and Move Ordering
	The Effect of �Alpha-Beta Pruning
	Issue With Minimax Search
	Heuristic Methods
	Heuristic Alpha-Beta Tree Search
	Option A: Heuristic Cut Off Search
	Heuristic Alpha-Beta Tree Search:�Cut Off Search
	Option B: Heuristic Forward Pruning
	Heuristic Alpha-Beta Tree Search:�Example for Forward Pruning
	Important Considerations
	Heuristic Methods
	Idea of Monte Carlo Search
	Pure Monte Carlo Search
	Monte Carlo Tree Search (MCTS)
	Playout Selection Strategy
	Upper Confidence Bound 1 (UCB1) �Applied to Trees (UCT)
	Trees in MCTS
	Monte-Carlo-Tree-Search Algorithm
	Some Considerations
	Stochastic Games
	Stochastic Games
	Expectiminimax
	MCTS for Stochastic Games
	Conclusion

