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Games

• Strategic environment: Games typically feature an 
environment containing an opponent who wants to 
win against the agent.

• Episodic environment: One game does not affect 
the next.

• We will focus on planning for
• two-player zero-sum games with 
• deterministic game mechanics and 
• perfect information (i.e., fully observable environment).

• We call the two players: 
1) Max tries to maximize its utility.
2) Min tries to minimize Max’s utility (zero-

sum game).



Definition of a Game

Definition:
𝑠𝑠0  The initial state (position, board, hand).
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑠𝑠) Legal moves in state 𝑠𝑠. 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑠𝑠, 𝑎𝑎) Transition model.
𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑠𝑠) Test for terminal states.
𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈(𝑠𝑠) Utility for player Max for terminal states.



Example: Tic-tac-toe

𝑠𝑠0   Empty board.
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑠𝑠)  Play empty squares.
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑠𝑠, 𝑎𝑎)  Symbol (x/o) is placed on empty square.
𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑠𝑠)  Did a player win or is the game a draw?
𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈(𝑠𝑠)  +1 if x wins, -1 if o wins and 0 for a draw.
   Utility is only defined for terminal states.

Here player x is Max 
and player o is Min.

Note: This game still uses a goal-based agent that 
plans actions to reach a winning terminal  state!



Games as Search Problems

• Making a move is a decision problem that can be addressed 
as a search problem. We need to search for sequences of 
moves that lead to a winning position.

• Search problems have a state space: a graph defined by the 
initial state and the transition function containing all 
reachable states (e.g., chess positions).

• The search tree is called game tree: A complete game tree 
follows every sequence from the current state to the end of 
the game (the terminal state). It consists of the set of paths 
through the state space representing all possible games that 
can be played.



Tic-tac-toe: Partial Game Tree

1

9

9 × 8
  

# of nodes

action / result()

node / state

redundant path

Terminal states 
have a known 

utility

Note: This game 
has no cycles!

The state space size (number of 
possible boards) is much smaller 
than:

39 = 19,683 states.

However, the complete game tree is 
much larger because the same state 
(board) can be reached in different 
subtrees (redundant paths). The game 
tree here is a little smaller than:

1 + 9 ×  8 + 9 × 8 × 7 + ⋯ 9!
= 986,409 nodes



Methods for 
Adversarial 

Games

Exact Methods
• Model as nondeterministic actions: The 

opponent is seen as part of an 
environment with nondeterministic 
actions. Non-determinism is the result of 
the unknown moves by the opponent. We 
consider all possible moves by the 
opponent.

• Find optimal decisions: Minimax search 
and Alpha-Beta pruning, where each 
player plays optimally to the end of the 
game.

Heuristic Methods 
(game tree is too large)

• Heuristic Alpha-Beta Tree Search: 
a. Cut-off game tree and use a 

heuristic for utility. 
b. Forward Pruning: ignore poor 

moves.

• Monte Carlo Tree search: Estimate the 
utility of a state by simulating complete 
games and averaging the utility.



Exact Method:
Nondeterministic Actions



Nondeterministic Actions
• The opponent is considered part of the strategic environment.
• Each “round” consists of

a) the deterministic move by the agent, and
b) a non-deterministic response by the opponent (the environment). 

Recall: Nondeterministic actions (AIMA Chapter 4) 
We can use a stochastic transition model that describes uncertainty 
about the opponent's behavior. 
Example transition: 

    𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑠𝑠1, 𝑎𝑎 = 𝑠𝑠2, 𝑠𝑠4, 𝑠𝑠5  

i.e., action 𝑎𝑎 in 𝑠𝑠1 can lead to one of several states depending on the 
opponents move. This set of states is called a belief state.



Tic-tac-toe: AND-OR Search
We play MAX and decide on our actions (OR). 
MIN’s actions introduce non-determinism (AND).

OR (specify 1 action)

OR

AND (consider all outcomes)

AND

Objective: Find a subtree that consists of 
• one action for OR nodes and 
• all children for AND nodes that 
• has only win leaf nodes (utility +1).
Extract a conditional plan from the subtree.

This implies playing optimally. 
• MAX: We try to find a move that 

guarantees a win (= optimal).
• MIN: We consider all the opponent’s 

moves in the AND stage. This includes 
MIN’s best (optimal) move.



Recall: AND-OR DFS Search Algorithm

// don’t follow loops

// check all possible actions

// check all possible resulting states

= nested If-then-else statements

Try 
agent’s 
moves

Go through 
opponent

moves

all states that can result 
from opponent’s moves

abandon subtree if a loss is possible

Construct a partial conditional plan for the subtree



Optimal Decisions: 
Minimax Search



Immediate vs. Long-Term Rewards

The immediate reward of a state is the utility that 
the agent receives for being in/getting to that state. 

Terminal states: The immediate reward is the 
known utility.

Non-terminal states: The immediate reward is 0.
Issue: How good is it to be in a non-terminal state? 
We need to complete the game and see. This is 
called the (expected) long-term reward of the 
state.

The optimal decision is to always choose the action 
that leads to the highest long-term reward state. 

?



Idea: Minimax Decision

• Assign each state 𝑠𝑠 a minimax value that reflects the utility 
realized if both players play optimally from 𝑠𝑠 to the end of 
the game (i.e., the long-term reward):

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑠𝑠 =

𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝑠𝑠  if 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑠𝑠)
max

𝑎𝑎∈𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑠𝑠
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑠𝑠, 𝑎𝑎  if 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑀𝑀𝑀𝑀𝑀𝑀

min
𝑎𝑎∈𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑠𝑠

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑠𝑠, 𝑎𝑎  if 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑀𝑀𝑀𝑀𝑀𝑀

• This is a recursive definition which can be solved from 
terminal states backwards.

• Optimal decision for Max: Choose the action that leads to 
the state with the largest minimax value (highest long-term 
reward).



Minimax Search: Back-up 
Minimax Values

= minimax value (MV)

1

max

MV MV

MV MV MV MV MV MV MV MV MV

min

1 1

min
…

0 

Pick action that leads to the largest MV

Determine Minmax values (MVs) 
using a bottom-up strategy

Using MVs
• MAX always picks the action that leads 

to the largest value.
• MIN always picks the action that leads 

to the smallest value.



Minimax DFS
Approach: Follow tree to each 
terminal node and back up 
minimax value.

Note: This is just a modification of 
the AND-OR Tree Search and 
returns the first action of the 
conditional plan.

Represents 
OR Search

Represents 
AND Search

Find the action that 
leads to the best value.



Exercise: Simple 2-Ply Game

2 0 5 -5 -2 7 5 -7 4Utility for Max

Max

Min

𝑎𝑎1 𝑎𝑎2 𝑎𝑎3

𝑎𝑎1 𝑎𝑎2
𝑎𝑎3

𝑎𝑎1
𝑎𝑎2

𝑎𝑎3 𝑎𝑎1
𝑎𝑎2

𝑎𝑎3

MV

MV MV MV

• Compute all MV (minimax values).
• What is the optimal action for Max?



Issue: Search Time
• Complexity

Space complexity: 𝑂𝑂 𝑏𝑏𝑏𝑏  - Function call stack + best value/action

Time complexity: 𝑶𝑶 𝒃𝒃𝒎𝒎  - Minimax search is worse than regular DFS for 
finding a goal! It traverses the entire game tree using DFS!

•  A fast solution is only feasible for very simple games with few 
possible moves (=small branching factor) and few moves till the 
game is over (=low maximal depth)!

• Example: Time complexity of Minimax Search for Tic-tac-toe 
𝑏𝑏 =  9,𝑚𝑚 =  9 → 𝑂𝑂 99 = 𝑂𝑂 387,420,489

 𝑏𝑏 decreases from 9 to 8, 7, … the actual size is smaller than:
1 9 9 ×  8 9 × 8 × 7 … 9! = 986,409 nodes

• We need to reduce the time complexity! → Game tree pruning

b: max. branching factor
m: max. depth of tree



Improvements for 
Minimax Search 

Alpha-Beta Pruning Search and Move Ordering



Alpha-Beta Pruning Search

• Issue: Minimax search traverses the entire game tree.
• Idea: Do not search parts of the tree if they do not make a 

difference to the outcome.
• Observations: 

• min(3, 𝑥𝑥, 𝑦𝑦) can never be more than 3.
• max(5, min(3, 𝑥𝑥, 𝑦𝑦, … )) is always 5 and does not depend on the 

values of 𝑥𝑥 or 𝑦𝑦.
• Minimax search applies alternating min and max.

• Approach: maintain bounds for the minimax value [𝛼𝛼, 𝛽𝛽].
Prune subtrees (i.e., don’t follow actions) that do not affect 
the current minimax value bound.

• Alpha is used by Max and means “𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑠𝑠  will be at least 𝛼𝛼.”
• Beta is used by Min and means “𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑠𝑠  will be at most 𝛽𝛽.”



Example: Alpha-Beta Pruning
Max updates α 
(utility is at least)

Min updates 𝛽𝛽
(utility is at most)

Once a subtree is 
fully evaluated, 
the interval has a 
length of 0 
(𝛼𝛼 = 𝛽𝛽).

Max

Min

[𝛼𝛼, β]

Min

Min

Max

Max
𝑣𝑣 = 3

Min

Max

Min

Max
𝑣𝑣 = 2

𝑣𝑣 = 3

Utility cannot be 
more than 2 in the 

subtree, but we 
already can get 3 

from the first 
subtree. Prune the 

rest.

Min

Max

𝑣𝑣 ≤ 2



 
= minimax search + pruning

Abandon subtree if Min would not 
go there because it has a better 

choice (represented by 𝛽𝛽)

// v is the minimax value

Found a better action?

Found a better action?

Abandon subtree if  Max would 
not go there because it has a 

better choice (represented by 𝛼𝛼)



Exercise: Simple 2-Ply Game 
with Alpha-Beta Pruning

• Find the [𝛼𝛼, 𝛽𝛽] intervals for all nodes.
• What is the optimal move sequence?
• What part of the tree can be pruned?

-5 2 5 7 0 2 5 -7 -4Utility for Max

Max

Min

𝑎𝑎1 𝑎𝑎2 𝑎𝑎3

𝑎𝑎1 𝑎𝑎2
𝑎𝑎3

𝑎𝑎1
𝑎𝑎2

𝑎𝑎3 𝑎𝑎1
𝑎𝑎2

𝑎𝑎3

[𝛼𝛼, 𝛽𝛽]

[𝛼𝛼, 𝛽𝛽] [𝛼𝛼, 𝛽𝛽] [𝛼𝛼, 𝛽𝛽]

Max updates α 
(utility is at least)

Min updates 𝛽𝛽
(utility is at most)



Move Ordering for Alpha-Beta Pruning

• Idea: Pruning is more effective if good alpha-beta 
bounds can be found in the first few checked 
subtrees.

• Move ordering for DFS = Check good moves for 
Min and Max first.

• This is very similar to Greedy Best-first Search. We 
need expert knowledge (a heuristic) to determine 
what a good move is.



Exercise: Simple 2-Ply Game with Alpha-
Beta Pruning and Move Ordering

• Find the [𝛼𝛼, 𝛽𝛽] intervals for all nodes using the move ordering.
• What is the optimal move sequence?
• What part of the tree was pruned?

• Assume a heuristic shows that we 
should order the moves: 𝑎𝑎2, 𝑎𝑎1, 𝑎𝑎3

Max updates α 
(utility is at least)

Min updates 𝛽𝛽
(utility is at most)

-5 2 5 7 0 2 5 -7 -4Utility for Max

Max

Min

𝑎𝑎1 𝑎𝑎2 𝑎𝑎3

𝑎𝑎1 𝑎𝑎2
𝑎𝑎3

𝑎𝑎1
𝑎𝑎2

𝑎𝑎3
𝑎𝑎1

𝑎𝑎2
𝑎𝑎3

[𝛼𝛼, 𝛽𝛽]

[𝛼𝛼, 𝛽𝛽] [𝛼𝛼, 𝛽𝛽] [𝛼𝛼, 𝛽𝛽]



The Effect of 
Alpha-Beta Pruning

Method Searched Nodes Search Time

Minimax Search 549,946 13 s

+ Alpha-Beta Pruning 18,297 660 ms

+ Move ordering 
   (heuristic: center, corner, rest)

7,275 202 ms

Tic-tac-toe



Issue With Minimax Search

• Optimal decision-making algorithms scale poorly 
for large game trees.

• Alpha-beta pruning and move ordering are often 
not sufficient to reduce the search time.

• Fast approximate methods are needed. 
We may lose the optimality guarantee, but we can 
work with larger problems.



Heuristic Methods
Heuristic Alpha-Beta 

Tree Search



Heuristic Alpha-Beta Tree Search

Issue: The game tree is too large to use optimal 
Alpha-Beta Search.

Approach: Search only part of the tree by replacing 
missing information using a heuristic evaluation 
function. 

Options:
a. Cut off game tree and use a heuristic for utility. 
b. Forward Pruning: ignore poor moves.



Option A: Heuristic Cut Off Search
Reduce the search cost by restricting the search depth:
1. Stop search at a non-terminal node.
2. Use a heuristic evaluation function 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑠𝑠  to approximate the utility based 

on features of the state. 

Needed properties of the evaluation function:
 Fast to compute.
 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑠𝑠 ∈ 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 , 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝑤𝑤𝑤𝑤𝑤𝑤
 Correlated with the actual chance of winning.

Examples: 
1. A weighted linear function 

  𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑠𝑠 = 𝑤𝑤1𝑓𝑓1 𝑠𝑠 + 𝑤𝑤2𝑓𝑓2 𝑠𝑠 + ⋯+ 𝑤𝑤𝑛𝑛𝑓𝑓𝑛𝑛(𝑠𝑠)    

where 𝑓𝑓𝑖𝑖 is a feature of the state (e.g., # of pieces captured in chess).
2. A deep neural network (or other ML method) trained on complete games.



Heuristic Alpha-Beta Tree Search:
Cut Off Search

Eval Eval Eval Eval = heuristic to estimate of the minimax 
value/utility of the state.

HMV HMV HMV HMV HMV HMV HMV HMV HMV

HMV = heuristic minimax value

1

2

3

Depth (ply)
0

Cu
t s

ea
rc

h 
of

f a
t d

ep
th

 =
2

This is also called: search 
with a “look ahead” of 2

Pick the action with
 the highest HMV



Option B: Heuristic Forward Pruning

Idea: Focus search on good moves (= prune the others).

There are many ways in which quality can be evaluated:
• Low heuristic evaluation value.
• Low heuristic minimax value after shallow search (cut-off 

search).
• Past experience.

Beam search: Focus on the 𝑛𝑛 best moves at every layer in 
the game tree.

Issue: May prune important moves.



Heuristic Alpha-Beta Tree Search:
Example for Forward Pruning

Cu
t s

ea
rc

h 
of

f a
t d

ep
th

 =
2

xx x xxx

x … prune low HMV actions

Eval Eval Eval

HMV HMV HMV HMV HMV HMV HMV HMV HMV

Continue alpha-beta 
search on these.

1. Perform Cut-off search.
2. Choose the n  best actions 

using the heuristic minimax 
value and prune the rest.

3. Explore the chosen actions 
using heuristic Alpha-Beta 
Tree search.



Important Considerations

• Designing a good evaluation heuristic can be difficult.
• We need expert knowledge.
• Experimentation may be needed to choose the best 

heuristic.

• The cutoff depth affects the runtime and the quality of 
the found move.

• Low cutoff: Fast, but the approximation of the evaluation 
function will be poor.

• Intermediate cutoff: Slower because a larger tree needs to be 
searched, but the evaluation function will work better.

• Infinity (= no cutoff): The algorithm reverts to complete 
minimax search and optimal decisions. 



Heuristic Methods
Monte Carlo Tree Search 

(MCTS)



Idea of Monte Carlo Search
“Monte Carlo simulation is a computational technique that uses repeated random 
sampling to obtain numerical results, often used to model uncertain events or 
systems where outcomes are difficult to predict deterministically.” [Wikipedia]

• Approximate 𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 𝒔𝒔  as the average utility of several playouts (= simulated 
games).

• Playout policy: How to choose moves during the simulation runs? 
Example playout policies: 

• Random.
• Heuristics for good moves developed by experts.
• Learn a good playout policy from self-play (e.g., with deep neural networks). 

We will discuss this further when we cover “Learning from Examples.”

• Typically used for problems with
• High branching factor (many possible moves make the tree very wide).
• Unknown or hard to define evaluation functions.



Pure Monte Carlo Search
• Goal: Find the best next move.
• Method

1. Simulate 𝑁𝑁 playouts from the current state using a random playout policy.
2. Track which move has the highest win percentage (or largest expected utility) 

in its subtree.

• Optimality Guarantee: Converges to optimal play for stochastic games as 
𝑁𝑁 increases. 

• Typical strategy for 𝑁𝑁 : Do as many playouts as you can given the available 
time budget for the move. 

Start playouts

Estimate win 
probability

#wins/playouts 0.54 0.50 0.62 0.57 0.78 0.52 0.38 0.65 0.14

0.61



Monte Carlo Tree Search (MCTS)

Pure Monte Carlo search always starts playouts from a given 
state (or randomly from its children). 

Issue: Many playouts are performed for very bad moves.

Idea: Focus on sequences of good moves.

We will introduce 
a) UCB1 to select a good move to play out next.
b) A tree to deal with short sequences of moves.



Playout Selection Strategy

Issue: Pure Monte Carlo Search with a random playout policy spends a lot of time to create 
playouts for bad move.

Better: Select the starting state for playouts to focus on important parts of the game tree (i.e., good 
moves).
This presents the following tradeoff:

Exploration: perform more playouts 
from states that currently have no or few 

playouts.

Exploitation: more playouts for states that have 
done well to get more accurate estimates.

For the empty board, 
Max can start a 

playout at any of 
these states. Which 

one should it choose?



Upper Confidence Bound 1 (UCB1) 
Applied to Trees (UCT)

𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝑛𝑛 = 𝑈𝑈 𝑛𝑛
𝑁𝑁 𝑛𝑛

+ 𝐶𝐶 log 𝑁𝑁(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑛𝑛 )
𝑁𝑁(𝑛𝑛)

 

𝑛𝑛         … node in the game tree
𝑈𝑈 𝑛𝑛   … total utility of all playouts going through node n
𝑁𝑁 𝑛𝑛   … number of playouts through n

Average utility
(=exploitation)

Tradeoff constant ≈ 2
can be optimizes using experiments

High for nodes with few playouts relative to the 
parent node (=exploration). Goes to 0 for large 𝑁𝑁(𝑛𝑛)

Selection strategy: Select node with highest UCB1 score. 



Trees in MCTS

Monte Carlo Tree Search builds a partial game tree 
representing short sequences of the next few moves.

Playouts can start from any state (leaf node) in that tree. This 
means the algorithm can focus on a good sequence of moves.

Important considerations:
• We typically can only store a small part of the game tree, so 

we do not store the complete playout runs.
• We can use UCB1 as the selection strategy to decide what 

part of the tree we should focus on for the next playout. 
This balances exploration and exploitation.



White

White

White

Black

Black

UCB1 selection favors win 
percentage more and more.

Wins/Playouts

Highest UCB1 score

Select leaf with 
highest UCB1 score Expand and Simulate: the simulation path is 

not recorded to preserve memory!

(update counts)

Fi
rs

t f
ew

 le
ve

ls

Advantage over pure MCS: 
Selection strategically 
focuses search 



Some Considerations

• Estimating the value of a position using simple playouts is 
very effective and typically beats many other methods.

• Playouts can be done in parallel (multi-core or on multiple 
machines).

• MCTS selects playouts strategically by using UCB1 playout 
selection and looking several moves ahead.

• Note: Random playouts may not work well, and a better 
playout policy can help.

• Slow Convergence. Playouts may be wasted on playing very bad 
(random) moves that nobody would ever play.

• Random play makes discovering long-term strategies very unlikely. 



Stochastic Games
Games With Random Events



Stochastic Games

• Game includes a “random action” 𝑟𝑟 (e.g., dice, dealt cards) 
• Add chance nodes that calculate the expected value.

Backgammon: Move checker 
pieces according to the dice. 

MAX has just rolled 6 + 5

move



Expectiminimax
• Game includes a “random action” 𝑟𝑟 (e.g., dice, dealt cards).
• For chance nodes we calculate the expected minimax value.

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑠𝑠 =
 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝑠𝑠  if 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑠𝑠)

max
𝑎𝑎∈𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑠𝑠

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑠𝑠, 𝑎𝑎  if 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑀𝑀𝑀𝑀𝑀𝑀

min
𝑎𝑎∈𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑠𝑠

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑠𝑠, 𝑎𝑎  if 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑀𝑀𝑀𝑀𝑀𝑀

�
𝑟𝑟
𝑃𝑃(𝑟𝑟)𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑠𝑠, 𝑟𝑟  if 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

• Options:
• Use Minimax algorithm. Issue: Search tree size explodes if the number of 

“random actions” is large. Think of drawing cards for poker!
• Heuristic Expectiminimax Search: Cut-off search and with an evaluation 

function.



MCTS for Stochastic Games

Monte Carlo Tree Search can be directly applied to 
stochastic games: Random actions can be easily 
added to playouts.

Issue: Random actions result in a significantly larger 
game tree.

• Requires a much larger number of playouts to converge 
to good solutions. 

• The tree cannot be very deep because the random 
actions make it very wide.



Conclusion

Nondeterministic actions: 
• The opponent is seen as part of an 

environment with nondeterministic 
actions. Non-determinism is the 
result of the unknown moves by the 
opponent. All possible moves are 
considered.

Optimal decisions: 
• Minimax search and Alpha-Beta 

pruning where each player plays 
optimal to the end of the game.

• Choice nodes and Expectiminimax for 
stochastic games.

Heuristic Alpha-Beta Tree Search: 
• Cut off game tree and use heuristic 

evaluation function for utility (based 
on state features). 

• Forward Pruning: ignore poor moves.
• Learn heuristic from data using MCTS 

Monte Carlo Tree search: 
• Simulate complete games and 

calculate proportion of wins.
• Use modified UCB1 scores to expand 

the partial game tree.
• Learn playout policy using self-play 

and deep learning.

Scale only for tiny problem
s!

State of the Art
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