

CS 5/7320

Artificial Intelligence

Knowledge-Based Agents

AIMA Chapters 7-9

Slides by Michael Hahsler

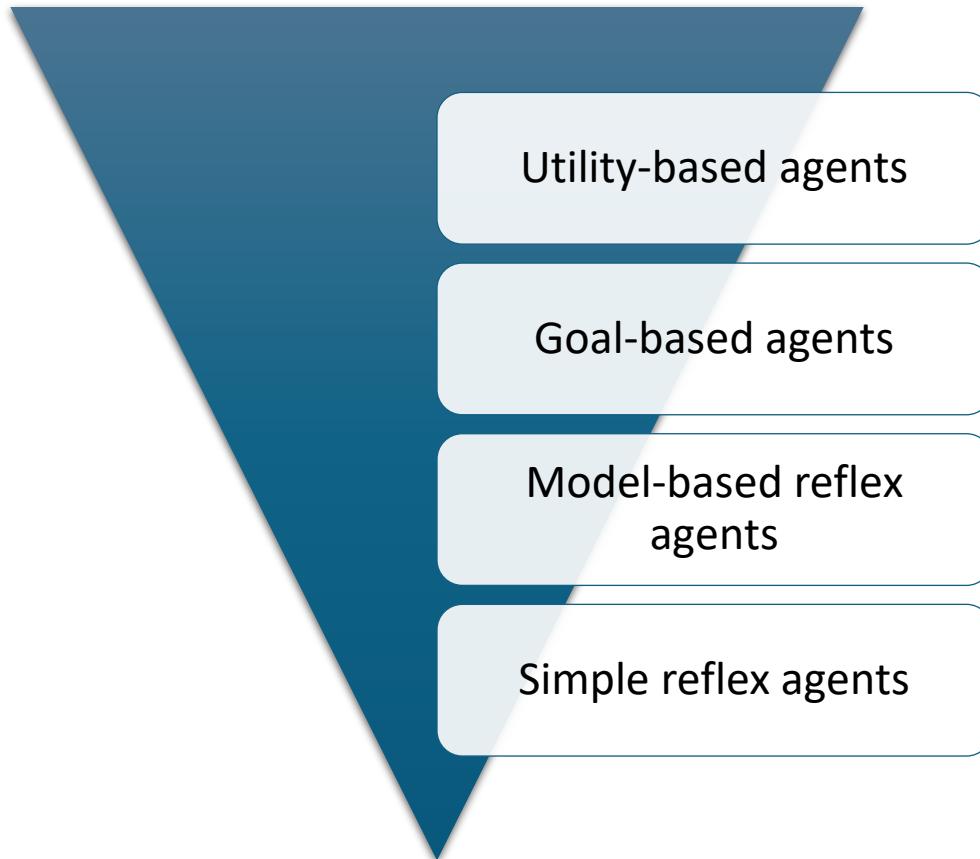
based on slides by Svetlana Lazepnik
with figures from the AIMA textbook

This work is licensed under a [Creative Commons](#)
[Attribution-ShareAlike 4.0 International License](#).

[Image: "Exercise Plays Vital Role Maintaining Brain Health" by A Health Blog](#)

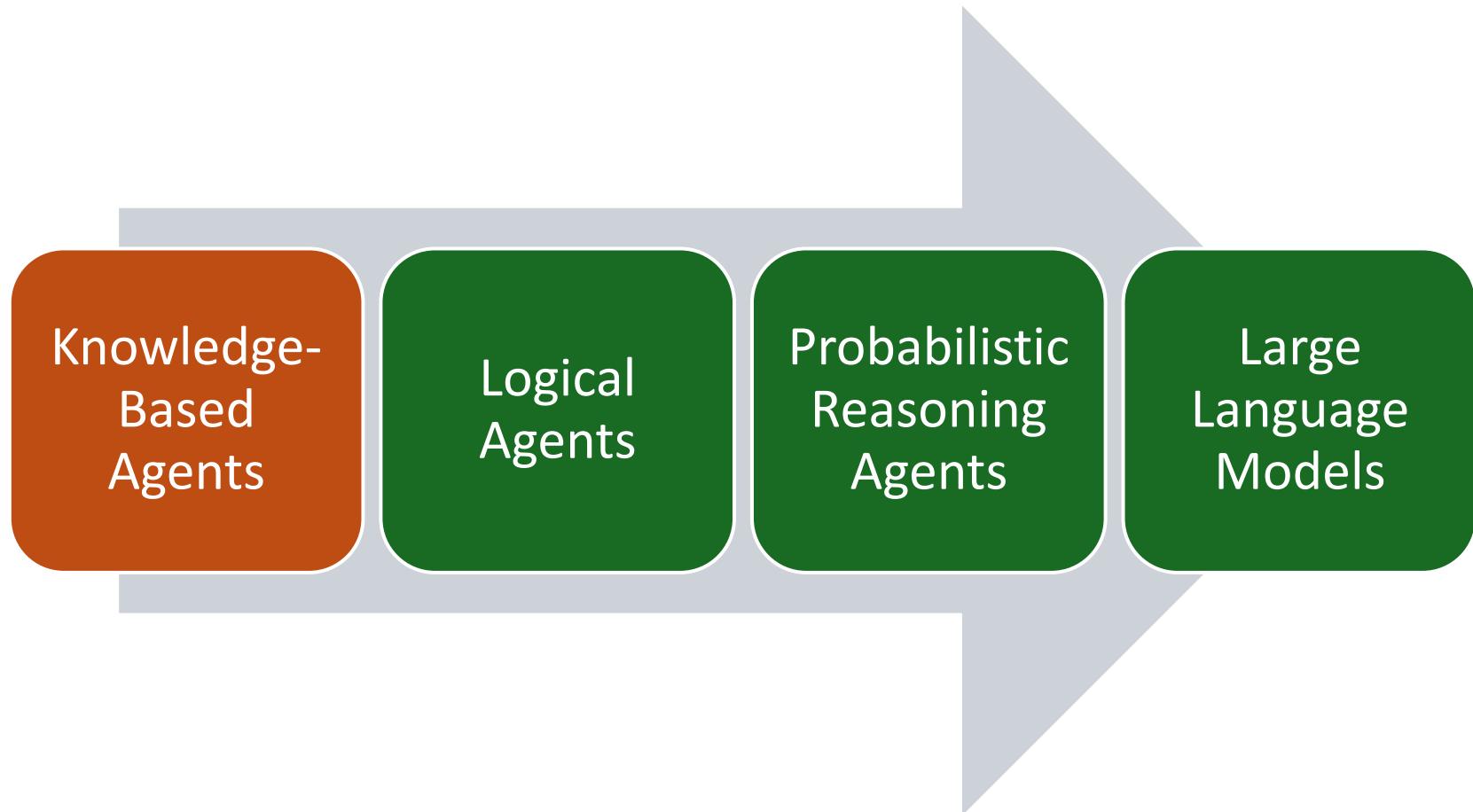
Online Material

Agent Types So Far

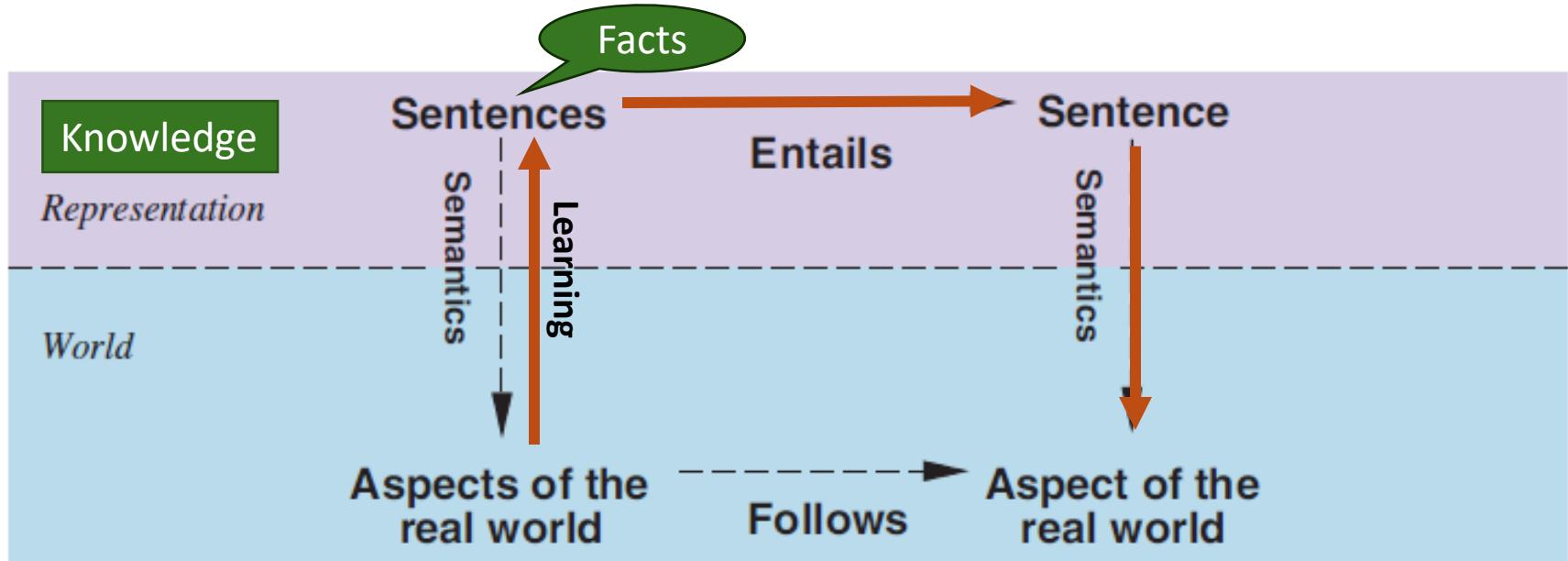


We will introduce a different class of agents that relies on reasoning using knowledge.

Outline

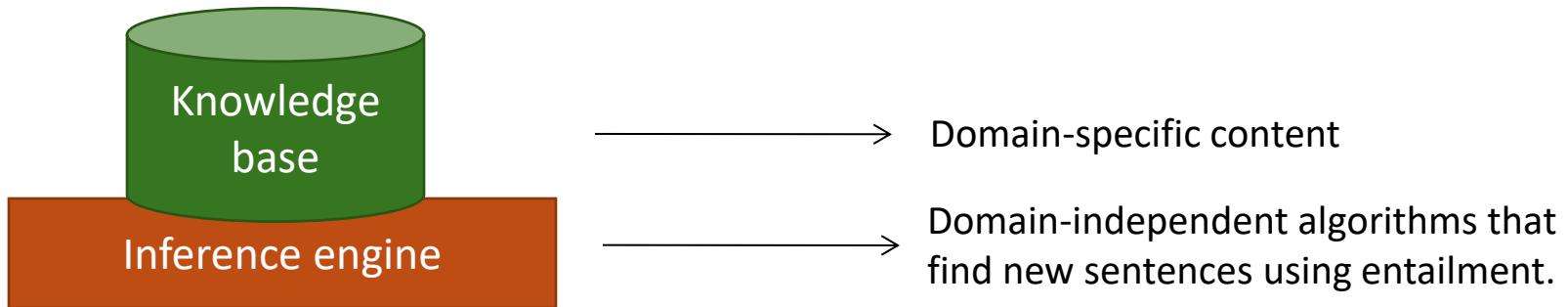


Reality vs. Knowledge Representation



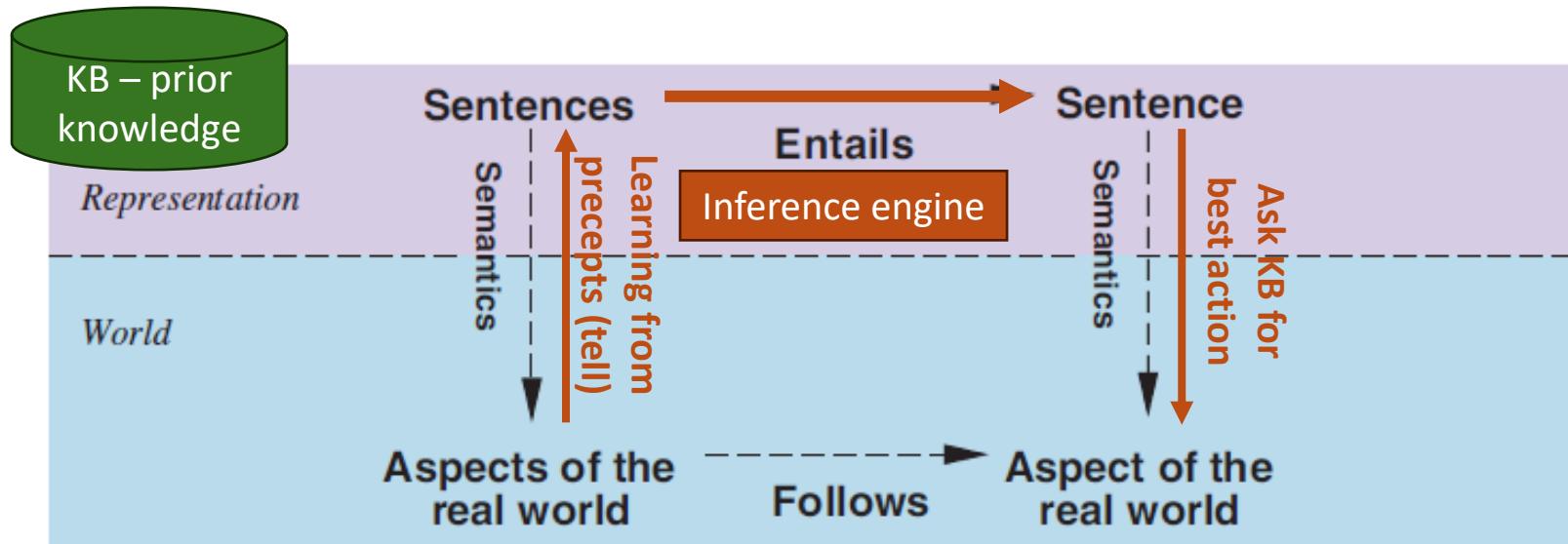
- **Facts:** Sentences we know to be true.
- **Possible worlds:** all worlds/models which are consistent with the facts we know (compare with belief state).
- **Learning** new facts reduces the number of possible worlds.
- **Entailment:** A new sentence logically follows from what we already know.
- **Reasoning:** The agent can reason about what will happen in the real world.

Knowledge-Based Agents



- Knowledge base (KB) = **set of facts**. E.g., set of **sentences** in a **formal language** that are known to be true.
- **Separation** between data (knowledge) and program (inference).
- **Declarative** approach to building an agent: Define what it needs to know in its KB. Use an off-the-shelf inference engine.
- The concepts of **goals or utility** can be incorporated into the knowledge base as facts.
- **Actions** are based on knowledge (sentences + inferred sentences).

Generic Knowledge-based Agent



```

function KB-AGENT(percept) returns an action
  persistent: KB, a knowledge base
  t, a counter, initially 0, indicating time
  TELL(KB, MAKE-PERCEP-SENTENCE(percept, t))
  action  $\leftarrow$  ASK(KB, MAKE-ACTION-QUERY(t))
  TELL(KB, MAKE-ACTION-SENTENCE(action, t))
  t  $\leftarrow$  t + 1
  return action

```

- Memorize percept at time *t*
- Ask for logical action given the knowledge
- Record action taken at time *t*

Different Languages to Represent Knowledge

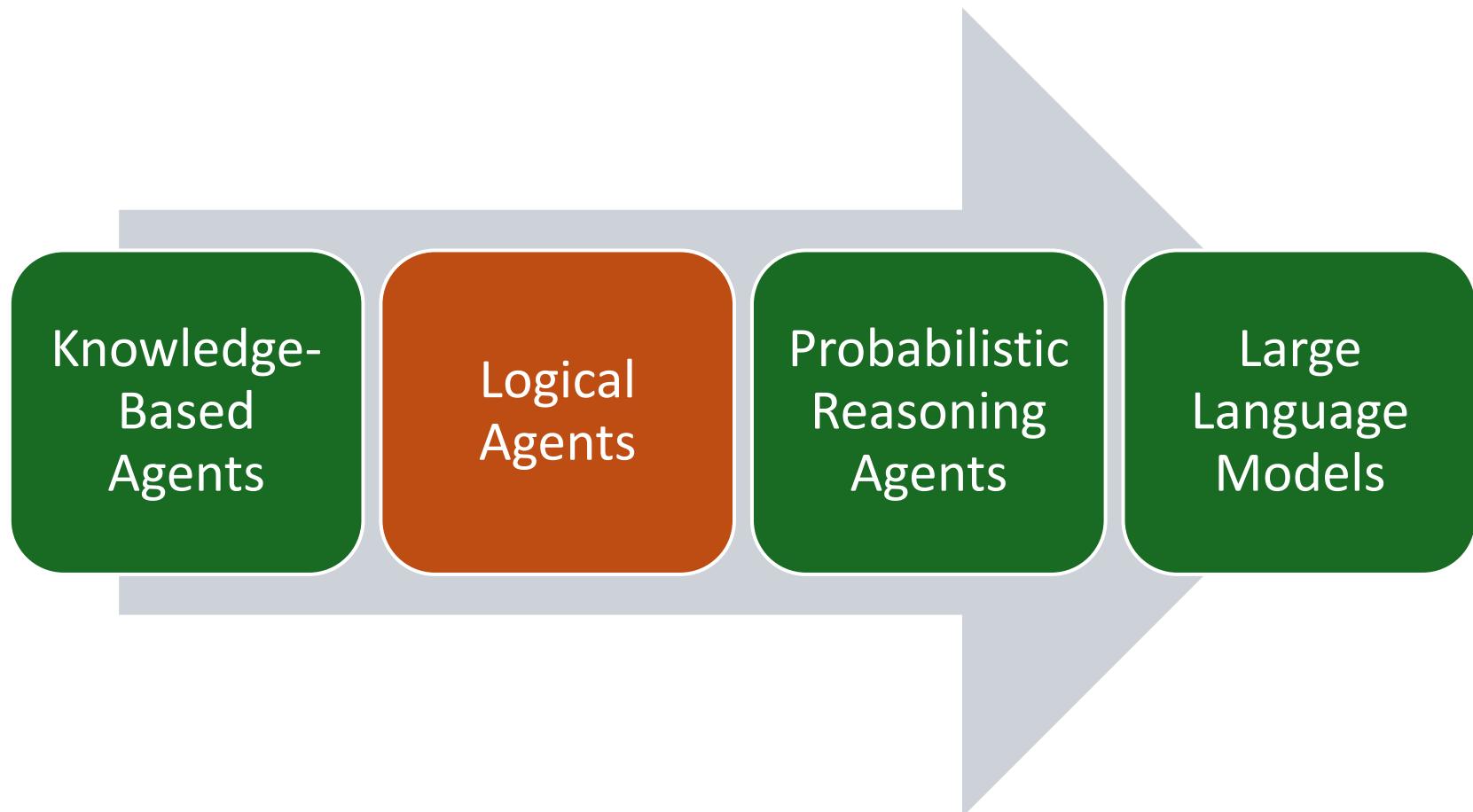
Language	Ontological Commitment (What exists in the world)	Epistemological Commitment (What an agent believes about facts)
Propositional logic	facts	true/false/unknown
First-order logic	facts, objects, relations	true/false/unknown
Temporal logic	facts, objects, relations, times	true/false/unknown
Probability theory	facts	degree of belief $\in [0, 1]$
Fuzzy logic	facts with degree of truth $\in [0, 1]$	known interval value

+ Natural Language word patterns representing
 facts, objects, relations, ... ???

Knowledge-based Agents

Logical and Probabilistic Reasoning Agents

Outline



Logical Agents

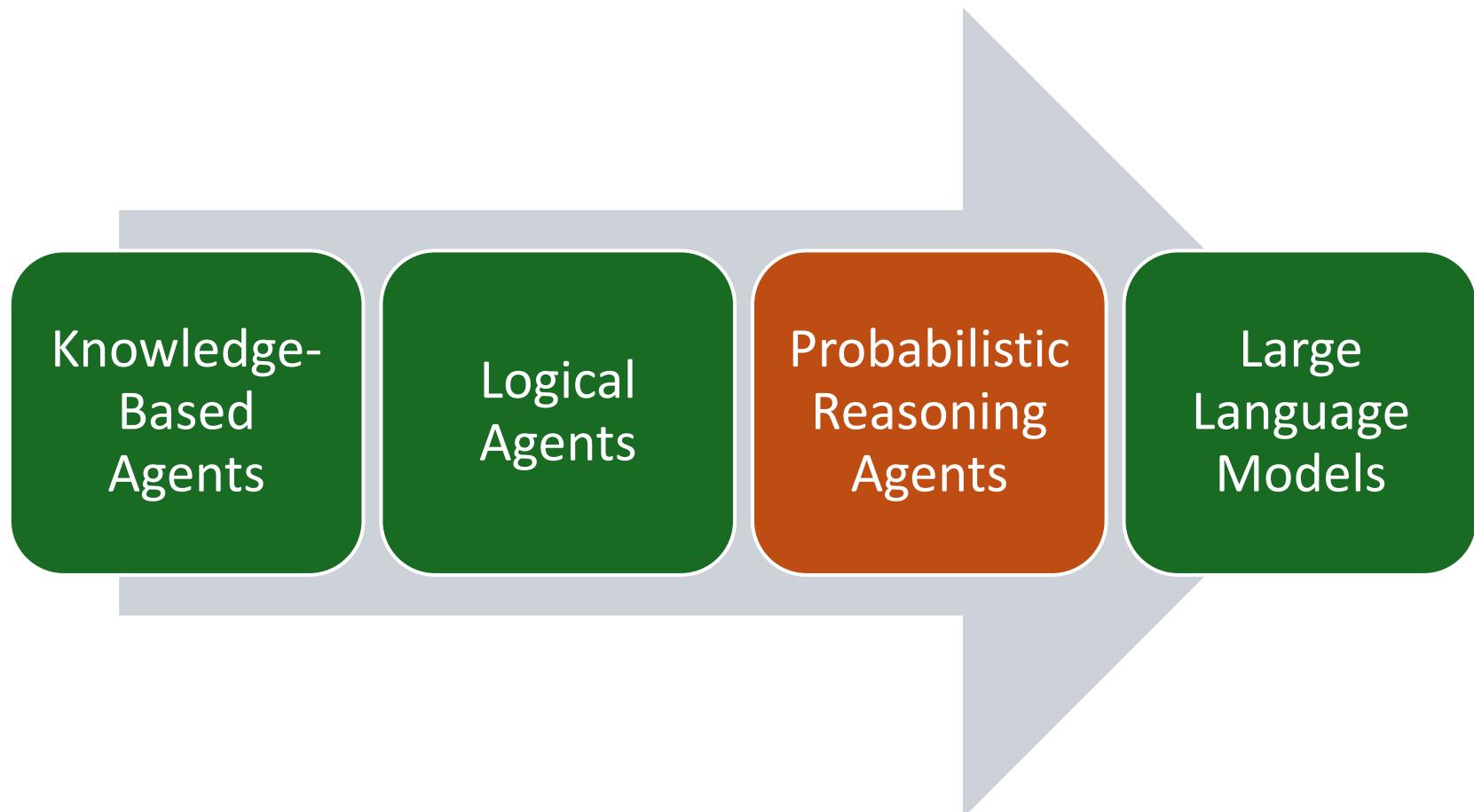
Language	Ontological Commitment (What exists in the world)	Epistemological Commitment (What an agent believes about facts)
Propositional logic	facts	true/false/unknown
First-order logic	facts, objects, relations	true/false/unknown
Temporal logic	facts, objects, relations, times	true/false/unknown
Probability theory	facts	degree of belief $\in [0, 1]$
Fuzzy logic	facts with degree of truth $\in [0, 1]$	known interval value

- Facts are logical sentences that are known to be true.
- Inference: Generate new sentences that are entailed by all known sentences.
- Implementation: Typically using Prolog
 - Declarative logic programming language.
 - Runs queries over the program (= the knowledge base)
- Synonyms: Symbolic AI, Expert Systems

Issues:

- Inference is computationally very expensive.
- Logic cannot deal with uncertainty.

Outline



Probabilistic Reasoning

Language	Ontological Commitment (What exists in the world)	Epistemological Commitment (What an agent believes about facts)
Propositional logic	facts	true/false/unknown
First-order logic	facts, objects, relations	true/false/unknown
Temporal logic	facts, objects, relations, times	true/false/unknown
Probability theory	facts	degree of belief $\in [0, 1]$
Fuzzy logic	facts with degree of truth $\in [0, 1]$	known interval value

- Replaces true/false with a probability.
- This is the basis for
 - Probabilistic reasoning under uncertainty
 - Decision theory
 - Machine Learning

We will talk about these topics a lot more

Conclusion

- The **clear separation between knowledge and inference engine** is very useful.
- **Pure logic** is often not flexible enough. The fullest realization of knowledge-based agents using logic was in the field of expert systems or knowledge-based systems in the 1970s and 1980s.
- **Pretrained Large Language Models** are an interesting new application of knowledge-based agents based on natural language.
- In one of the following chapters, we will talk about **probability theory**, the standard language to reason under uncertainty, and forms the basis of machine learning.

Handwritten mathematical notes and diagrams on a blackboard:

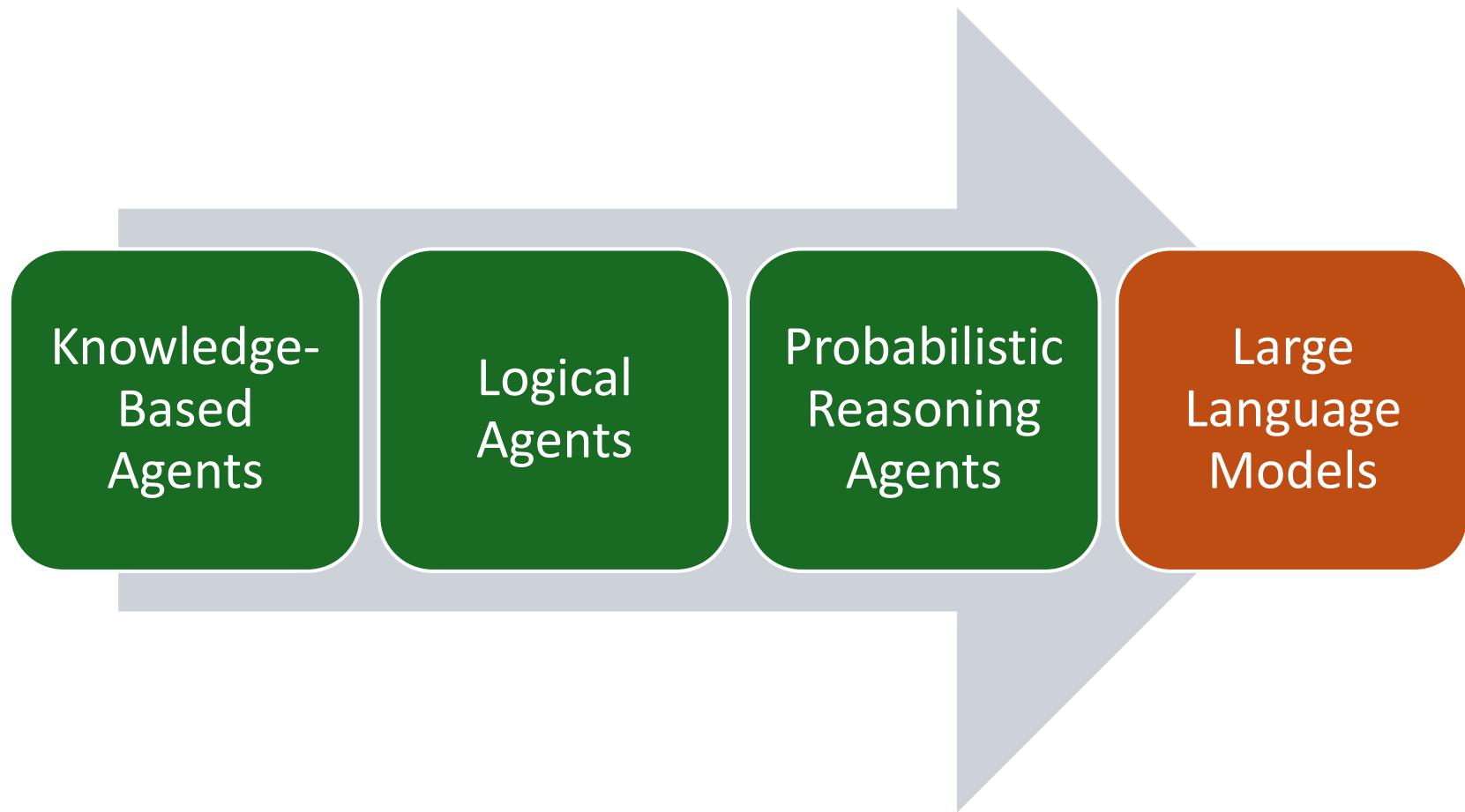
- Top right: $\sqrt{2456.96} = 49.6$
- Top center: $\sum x 9475 = 0$
- Top left: $\sum x^2 81132$
- Left side: $2+3+4.31447$
- Middle left: $a^2 + b^2 = x^2$
- Middle center: $c(x, y) \left\{ \begin{array}{l} xy = c \\ cx - cy = 0 \\ z\pi = c \end{array} \right.$
- Bottom left: $\frac{4\pi x}{y} + \frac{a^2 + b^2}{c} + x^2 = 9$
- Bottom center: $= 584. + n^{30} (x^2 + 3)$
- Bottom right: $\sum N_{50} \cdot x - \frac{1}{2} [964 + x]$
- Bottom left diagram: A circle with center O and radius r, with a shaded sector.
- Bottom right diagram: A circle with center O and radius r, with a shaded sector.
- Bottom right text: $\beta = 9 + x^2$

I am a Large
Language
Model

Knowledge-Based Agents using Natural Language

Large Language Models

Outline



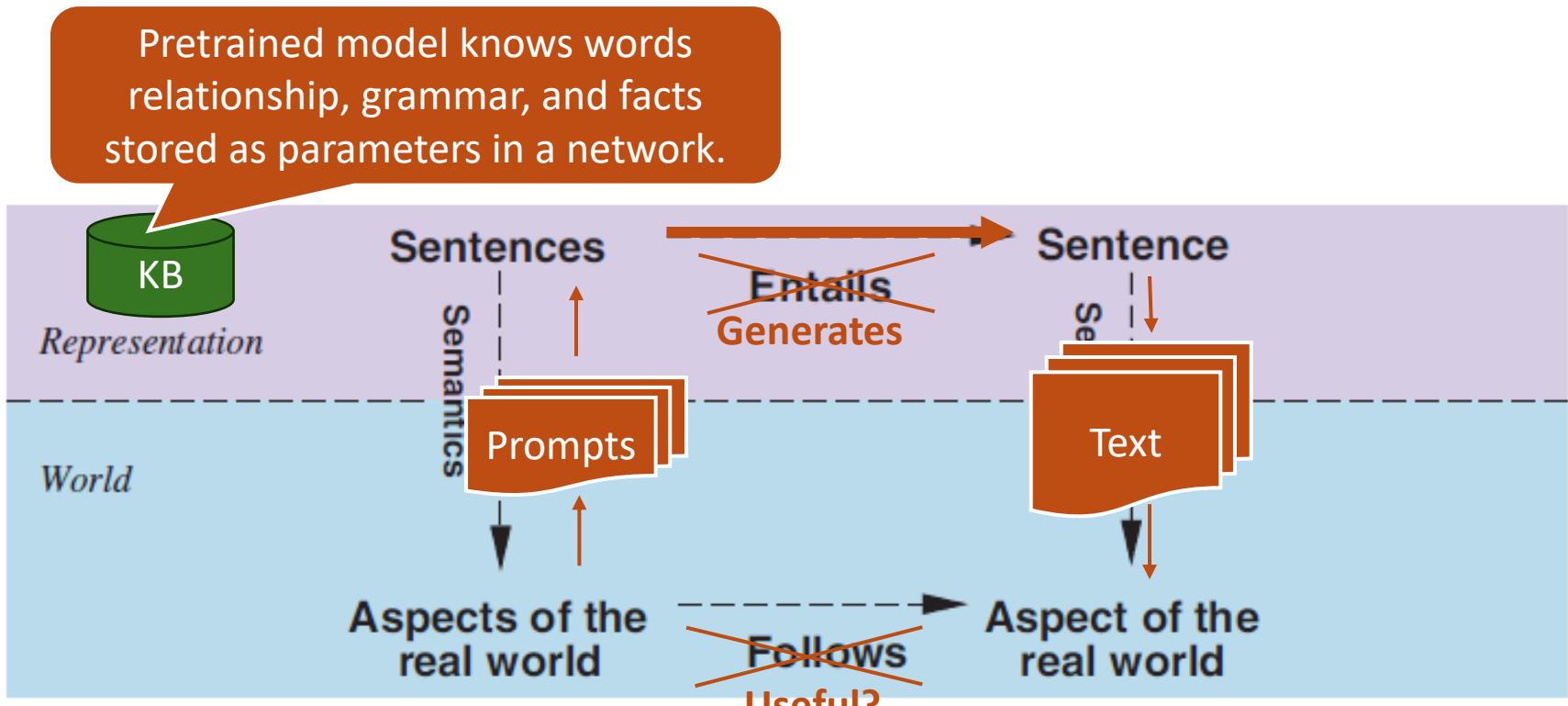
LLMs - Large Language Models

Language	Ontological Commitment (What exists in the world)	Epistemological Commitment (What an agent believes about facts)
Propositional logic	facts	true/false/unknown
First-order logic	facts, objects, relations	true/false/unknown
Temporal logic	facts, objects, relations, times	true/false/unknown
Probability theory	facts	degree of belief $\in [0, 1]$
Fuzzy logic	facts with degree of truth $\in [0, 1]$	known interval value

+	Natural Language	word patterns representing facts, objects, relations, ...	???
---	------------------	--	-----

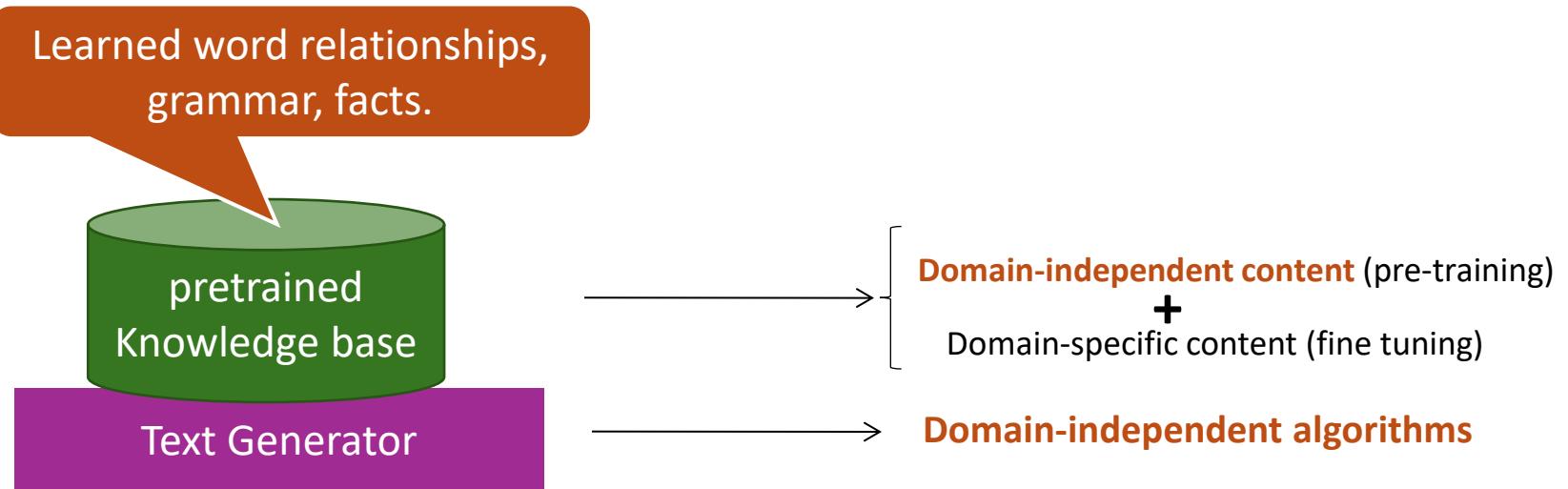
- Extract knowledge from large text corpora.
- Store knowledge compressed as parameters in a deep neural network.

Using Natural Language for Knowledge Representation



- The user formulates a question about the real world as a natural language **prompt** (a sequence of tokens).
- The LLM **generates text** using a pretrained model that represents its knowledge base.
- The text (hopefully) is useful in the real world. The **objective function** is not clear. Maybe it is implied in the prompt?

LLM as a Knowledge-Based Agents



Current text generators are:

- Pretrained decoder-only transformer models (e.g., GPT stands for Generative Pre-trained Transformer). The knowledge base is not updated during interactions.
- Tokens are created autoregressively. One token is generated at a time based on all the previous tokens using the transformer attention mechanism.

LLM as a Generic Knowledge-based Agent

Prompt + already
generated tokens

```
function KB-AGENT(percept) returns an action  
persistent: KB, a knowledge base  
          t, a counter, initially 0, indicating time
```

~~TELL(*KB*, MAKE-PERCEPT-SENTENCE(*percept*, *t*))~~
action \leftarrow ASK(*KB*, MAKE-ACTION-QUERY(*t*))

~~TELL(*KB*, MAKE-ACTION-SENTENCE(*action*, *t*))~~

$t \leftarrow t + 1$

return *action*

Next token

- A chatbot repeatedly calls the agent function till the agent function returns the 'end' token.

Many Open Questions about LLMs

- Correlation is not causation: **Can LLMs reason** to solve problems?
- Leaky data makes it hard to evaluate true **reasoning performance**.
- Generative stochasticity leads to **hallucinations**: LLM makes up facts.
- Autoregression is an exponentially **diverging** diffusion process.
- The training data contains **biases**, nonsense, and harmful content.
- **Security**: LLM can leak sensitive information it was trained on.
- **Rights laundering**: Copyrighted or licensed material can be included in the training data.

Reading: [\[2307.04821\] Amplifying Limitations, Harms and Risks of Large Language Models \(arxiv.org\)](https://arxiv.org/abs/2307.04821)

Appendix: Logic

Details on Propositional and First-Order Logic

Logic to Represent Knowledge

Logic is a formal system for representing and manipulating facts (i.e., knowledge) so that true conclusions may be drawn

Syntax: rules for constructing valid sentences

E.g., $x + 2 \geq y$ is a valid arithmetic sentence, $\geq x 2 y +$ is not

Semantics: “meaning” of sentences, or relationship between logical sentences and the real world

Specifically, semantics defines truth of sentences

E.g., $x + 2 \geq y$ is true in a world where $x = 5$ and $y = 7$

Propositional Logic

Language	Ontological Commitment (What exists in the world)	Epistemological Commitment (What an agent believes about facts)
Propositional logic	facts	true/false/unknown
First-order logic	facts, objects, relations	true/false/unknown
Temporal logic	facts, objects, relations, times	true/false/unknown
Probability theory	facts	degree of belief $\in [0, 1]$
Fuzzy logic	facts with degree of truth $\in [0, 1]$	known interval value

Propositional Logic: Syntax in Backus-Naur Form

Sentence → *AtomicSentence* | *ComplexSentence*

AtomicSentence → *True* | *False* | *P* | *Q* | *R* | ... = **Symbols**

ComplexSentence → (*Sentence*)

| \neg *Sentence* **Negation**

| *Sentence* \wedge *Sentence* **Conjunction**

| *Sentence* \vee *Sentence* **Disjunction**

| *Sentence* \Rightarrow *Sentence* **Implication**

| *Sentence* \Leftrightarrow *Sentence* **Biconditional**

OPERATOR PRECEDENCE : $\neg, \wedge, \vee, \Rightarrow, \Leftrightarrow$

Validity and Satisfiability

A sentence is **valid** if it is true in **all** models/worlds

e.g., *True*, $A \vee \neg A$, $A \Rightarrow A$, $(A \wedge (A \Rightarrow B)) \Rightarrow B$ are called tautologies and are useful to deduct new sentences.

A sentence is **satisfiable** if it is true in **some** model

e.g., $A \vee B$, C useful to find new facts that satisfy all current possible worlds.

A sentence is **unsatisfiable** if it is true in **no** models

e.g., $A \wedge \neg A$

Possible Worlds, Models and Truth Tables

A **model** specifies a “possible world” with the true/false status of each proposition symbol in the knowledge base

- E.g., **P** is true and **Q** is true
- With two symbols, there are $2^2 = 4$ possible worlds/models, and they can be enumerated exhaustively using:

A **truth table** specifies the truth value of a composite sentence for each possible assignments of truth values to its atoms. Each row is a model.

P	Q	$\neg P$	$P \wedge Q$	$P \vee Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
<i>false</i>	<i>false</i>	<i>true</i>	<i>false</i>	<i>false</i>	<i>true</i>	<i>true</i>
<i>false</i>	<i>true</i>	<i>true</i>	<i>false</i>	<i>true</i>	<i>true</i>	<i>false</i>
<i>true</i>	<i>false</i>	<i>false</i>	<i>false</i>	<i>true</i>	<i>false</i>	<i>false</i>
<i>true</i>	<i>true</i>	<i>false</i>	<i>true</i>	<i>true</i>	<i>true</i>	<i>true</i>

We have 3 possible worlds for $P \Rightarrow Q = \text{true}$

Propositional Logic: Semantics

Rules for evaluating truth with respect to a model:

- $\neg P$ is true iff P is false
- $P \wedge Q$ is true iff P is true and Q is true
- $P \vee Q$ is true iff P is true or Q is true
- $P \Rightarrow Q$ is true iff P is false or Q is true

Sentence

Model

Logical Equivalence

Two sentences are **logically equivalent** iff (read if, and only if) they are true in same models

- | | |
|--|--|
| $(\alpha \wedge \beta) \equiv (\beta \wedge \alpha)$ | commutativity of \wedge |
| $(\alpha \vee \beta) \equiv (\beta \vee \alpha)$ | commutativity of \vee |
| $((\alpha \wedge \beta) \wedge \gamma) \equiv (\alpha \wedge (\beta \wedge \gamma))$ | associativity of \wedge |
| $((\alpha \vee \beta) \vee \gamma) \equiv (\alpha \vee (\beta \vee \gamma))$ | associativity of \vee |
| $\neg(\neg\alpha) \equiv \alpha$ | double-negation elimination |
| $(\alpha \Rightarrow \beta) \equiv (\neg\beta \Rightarrow \neg\alpha)$ | contraposition |
| $(\alpha \Rightarrow \beta) \equiv (\neg\alpha \vee \beta)$ | implication elimination |
| $(\alpha \Leftrightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \wedge (\beta \Rightarrow \alpha))$ | biconditional elimination |
| $\neg(\alpha \wedge \beta) \equiv (\neg\alpha \vee \neg\beta)$ | de Morgan |
| $\neg(\alpha \vee \beta) \equiv (\neg\alpha \wedge \neg\beta)$ | de Morgan |
| $(\alpha \wedge (\beta \vee \gamma)) \equiv ((\alpha \wedge \beta) \vee (\alpha \wedge \gamma))$ | distributivity of \wedge over \vee |
| $(\alpha \vee (\beta \wedge \gamma)) \equiv ((\alpha \vee \beta) \wedge (\alpha \vee \gamma))$ | distributivity of \vee over \wedge |

Entailment

- **Entailment** means that a sentence **follows from** the premises contained in the knowledge base:

$$KB \models \alpha$$

- The knowledge base KB entails sentence α iff α is true in all models where KB is true
 - E.g., KB with $x = 0$ entails sentence $x * y = 0$
- Tests for entailment
 - $KB \models \alpha$ iff $(KB \Rightarrow \alpha)$ is *valid*
 - $KB \models \alpha$ iff $(KB \wedge \neg \alpha)$ is *unsatisfiable*

Inference

- **Logical inference:** a procedure for generating sentences that follow from (are entailed by) a knowledge base KB.
- An inference procedure is **sound** if it derives a sentence α iff $KB \models \alpha$. I.e, it only derives **true sentences**.
- An inference procedure is **complete** if it can derive **all** α for which $KB \models \alpha$.

Inference

- How can we check whether a sentence α is entailed by KB?
- How about we **enumerate all possible models of the KB** (truth assignments of all its symbols), and check that α is true in every model in which KB is true?
 - This is sound: All produced answer are correct.
 - This is complete: It will produce all correct answers.
 - **Problem:** if KB contains n symbols, the truth table will be of size 2^n
- Better idea: use ***inference rules***, or sound procedures to generate new sentences or *conclusions* given the *premises* in the KB.
- Look at the textbook for inference rules and resolution.

Inference Rules

- Modus Ponens

$$\frac{\alpha \Rightarrow \beta, \alpha}{\beta}$$

← premises
← conclusion

This means: If the KB contains the sentences $\alpha \Rightarrow \beta$ and α then β is true.

- And-elimination

$$\frac{\alpha \wedge \beta}{\alpha}$$

Inference Rules

- And-introduction

$$\frac{\alpha, \beta}{\alpha \wedge \beta}$$

- Or-introduction

$$\frac{\alpha}{\alpha \vee \beta}$$

Inference Rules

- Double negative elimination

$$\frac{\neg\neg\alpha}{\alpha}$$

- Unit resolution

$$\frac{\alpha \vee \beta, \neg\beta}{\alpha}$$

Resolution

$$\frac{\alpha \vee \beta, \neg \beta \vee \gamma}{\alpha \vee \gamma}$$

or

$$\frac{\alpha \vee \beta, \beta \Rightarrow \gamma}{\alpha \vee \gamma}$$

- Example:

α : “The weather is dry”

β : “The weather is rainy”

γ : “I carry an umbrella”

Resolution is Complete

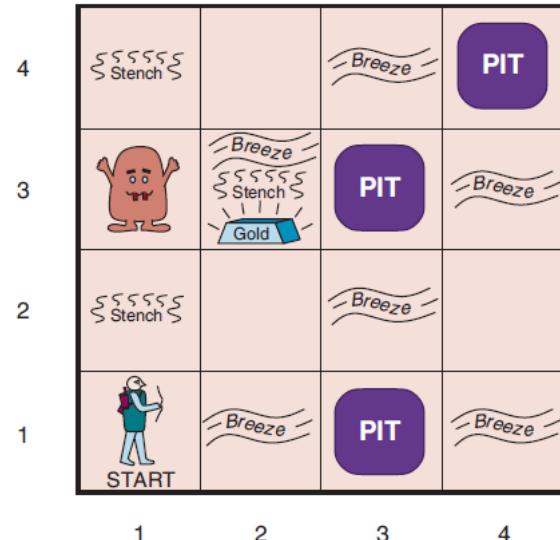
$$\frac{\alpha \vee \beta, \neg \beta \vee \gamma}{\alpha \vee \gamma}$$

- To prove $\text{KB} \models \alpha$, assume $\text{KB} \wedge \neg \alpha$ and derive a contradiction
- Rewrite $\text{KB} \wedge \neg \alpha$ as a conjunction of *clauses*, or disjunctions of *literals*
 - *Conjunctive normal form* (CNF)
- Keep applying resolution to clauses that contain *complementary literals* and adding resulting clauses to the list
 - If there are no new clauses to be added, then KB does not entail α
 - If two clauses resolve to form an *empty clause*, we have a contradiction and $\text{KB} \models \alpha$

Complexity of Inference

- Propositional inference is ***co-NP-complete***
 - *Complement* of the SAT problem: $\alpha \models \beta$ if and only if the sentence $\alpha \wedge \neg \beta$ is *unsatisfiable*
 - Every known inference algorithm has worst-case exponential run time complexity.
- Efficient inference is only possible for restricted cases
 - e.g., Horn clauses are disjunctions of literals with at most one positive literal.

Example: Wumpus World



1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
1,2	2,2	3,2	4,2
OK			

A = Agent
B = Breeze
G = Glitter, Gold
OK = Safe square
P = Pit
S = Stench
V = Visited
W = Wumpus

(a)

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
1,2	2,2	3,2	4,2
OK			

1,1	2,1	3,1	4,1
A OK	OK		

(b)

Example: Wumpus World

Initial KB needs to contain rules like these for each square:

$$\text{Breeze}(1,1) \Leftrightarrow \text{Pit}(1,2) \vee \text{Pit}(2,1)$$

$$\text{Breeze}(1,2) \Leftrightarrow \text{Pit}(1,1) \vee \text{Pit}(1,3) \vee \text{Pit}(2,2)$$

$$\text{Stench}(1,1) \Leftrightarrow \text{W}(1,2) \vee \text{W}(2,1)$$

...

Percepts at (1,1) are no breeze or stench. Add the following facts to the KB:

$$\neg \text{Breeze}(1,1)$$

$$\neg \text{Stench}(1,1)$$

Inference will tell us that the following facts are entailed:

$$\neg \text{Pit}(1,2), \neg \text{Pit}(2,1), \neg \text{W}(1,2), \neg \text{W}(2,1)$$

This means that (1,2) and (2,1) are safe.

We have to enumerate all possible scenarios in propositional logic! First-order logic can help.

Summary

- Logical agents apply **inference** to a **knowledge base** to derive new information and make decisions.
- Basic concepts of logic:
 - **syntax**: formal structure of sentences
 - **semantics**: truth of sentences in models
 - **entailment**: necessary truth of one sentence given another
 - **inference**: deriving sentences from other sentences
 - **soundness**: derivations produce only entailed sentences
 - **completeness**: derivations can produce all entailed sentences
- Resolution is complete for propositional logic.
- Algorithms use forward, backward chaining, are linear in time, and complete for special clauses (definite clauses).

Limitations of Propositional Logic

Suppose you want to say “All humans are mortal”

- In propositional logic, you would need ~6.7 billion statements of the form:
Michael_Is_Human and Michael_Is_Mortal,
Sarah_Is_Human and Sarah_Is_Mortal, ...

Suppose you want to say “Some people can run a marathon”

- You would need a disjunction of ~6.7 billion statements:

Michael_Can_Run_A_Marathon or ... or Sarah_Can_Run_A_Marathon

First-Order Logic

Language	Ontological Commitment (What exists in the world)	Epistemological Commitment (What an agent believes about facts)
Propositional logic	facts	true/false/unknown
First-order logic	facts, objects, relations	true/false/unknown
Temporal logic	facts, objects, relations, times	true/false/unknown
Probability theory	facts	degree of belief $\in [0, 1]$
Fuzzy logic	facts with degree of truth $\in [0, 1]$	known interval value

First-order Logic adds **objects** and **relations** to the facts of propositional logic.

This addresses the issues of propositional logic, which needs to store a fact for each instance of an object individually.

Syntax of FOL

$\text{Sentence} \rightarrow \text{AtomicSentence} \mid \text{ComplexSentence}$
 $\text{AtomicSentence} \rightarrow \text{Predicate} \mid \text{Predicate}(\text{Term}, \dots) \mid \text{Term} = \text{Term}$
 $\text{ComplexSentence} \rightarrow (\text{Sentence})$
 $\mid \neg \text{Sentence}$
 $\mid \text{Sentence} \wedge \text{Sentence}$
 $\mid \text{Sentence} \vee \text{Sentence}$
 $\mid \text{Sentence} \Rightarrow \text{Sentence}$
 $\mid \text{Sentence} \Leftrightarrow \text{Sentence}$
 $\mid \text{Quantifier Variable}, \dots \text{ Sentence}$

$\text{Term} \rightarrow \text{Function}(\text{Term}, \dots)$
 $\mid \text{Constant}$
 $\mid \text{Variable}$

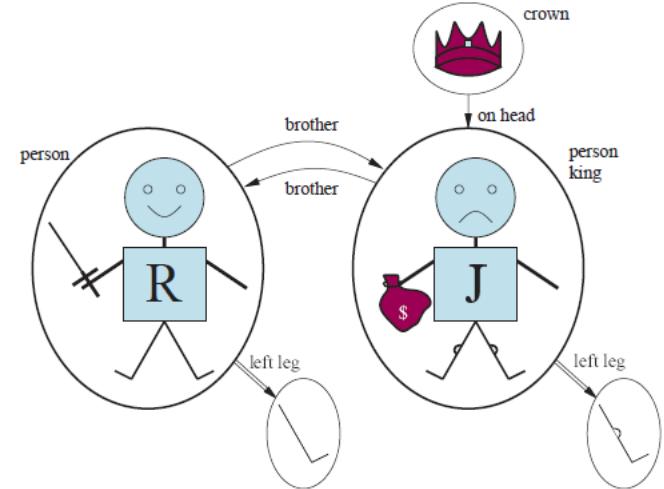
$\text{Quantifier} \rightarrow \forall \mid \exists$
 $\text{Constant} \rightarrow A \mid X_1 \mid \text{John} \mid \dots$

$\text{Variable} \rightarrow a \mid x \mid s \mid \dots$

$\text{Predicate} \rightarrow \text{True} \mid \text{False} \mid \text{After} \mid \text{Loves} \mid \text{Raining} \mid \dots$

$\text{Function} \rightarrow \text{Mother} \mid \text{LeftLeg} \mid \dots$

OPERATOR PRECEDENCE : $\neg, =, \wedge, \vee, \Rightarrow, \Leftrightarrow$



Objects

Relations. Predicate
is/returns True or False

Function returns an object

Universal Quantification

- $\forall x P(x)$
- Example: “Everyone at SMU is smart”
 $\forall x At(x, SMU) \Rightarrow Smart(x)$
Why not $\forall x At(x, SMU) \wedge Smart(x)$?
- Roughly speaking, equivalent to the **conjunction** of all possible instantiations of the variable:
 $[At(John, SMU) \Rightarrow Smart(John)] \wedge \dots$
 $[At(Richard, SMU) \Rightarrow Smart(Richard)] \wedge \dots$
- $\forall x P(x)$ is true in a model m iff $P(x)$ is true with x being each possible object in the model

Existential Quantification

- $\exists x P(x)$
- Example: “Someone at SMU is smart”
 $\exists x At(x, SMU) \wedge Smart(x)$
Why not $\exists x At(x, SMU) \Rightarrow Smart(x)$?
- Roughly speaking, equivalent to the **disjunction** of all possible instantiations:
 $[At(John, SMU) \wedge Smart(John)] \vee$
 $[At(Richard, SMU) \wedge Smart(Richard)] \vee \dots$
- $\exists x P(x)$ is true in a model m iff $P(x)$ is true with x being some possible object in the model

Properties of Quantifiers

- $\forall x \forall y$ is the same as $\forall y \forall x$
- $\exists x \exists y$ is the same as $\exists y \exists x$
- $\exists x \forall y$ is not the same as $\forall y \exists x$
 $\exists x \forall y \text{ Loves}(x,y)$
“There is a person who loves everyone”
 $\forall y \exists x \text{ Loves}(x,y)$
“Everyone is loved by at least one person”
- **Quantifier duality:** each quantifier can be expressed using the other with the help of negation
 $\forall x \text{ Likes}(x, \text{IceCream}) \quad \neg \exists x \neg \text{Likes}(x, \text{IceCream})$
 $\exists x \text{ Likes}(x, \text{Broccoli}) \quad \neg \forall x \neg \text{Likes}(x, \text{Broccoli})$

Equality

- **Term₁ = Term₂** is true under a given model if and only if **Term₁** and **Term₂** refer to the same object
- E.g., definition of **Sibling** in terms of **Parent**:
$$\forall x, y \text{ Sibling}(x, y) \Leftrightarrow$$
$$[\neg(x = y) \wedge \exists m, f \neg(m = f) \wedge \text{Parent}(m, x) \wedge \text{Parent}(f, x) \wedge$$
$$\text{Parent}(m, y) \wedge \text{Parent}(f, y)]$$

Example: The Kinship Domain

- Brothers are *siblings*
 $\forall x, y \text{ Brother}(x, y) \Rightarrow \text{Sibling}(x, y)$
- “*Sibling*” is symmetric
 $\forall x, y \text{ Sibling}(x, y) \Leftrightarrow \text{Sibling}(y, x)$
- One's mother is one's female parent
 $\forall m, c (\text{Mother}(c) = m) \Leftrightarrow (\text{Female}(m) \wedge \text{Parent}(m, c))$

Example: The Set Domain

- $\forall s \text{ Set}(s) \Leftrightarrow (s = \{\}) \vee (\exists x, s_2 \text{ Set}(s_2) \wedge s = \{x | s_2\})$
- $\neg \exists x, s \{x | s\} = \{\}$
- $\forall x, s x \in s \Leftrightarrow s = \{x | s\}$
- $\forall x, s x \in s \Leftrightarrow [\exists y, s_2 (s = \{y | s_2\} \wedge (x = y \vee x \in s_2))]$
- $\forall s_1, s_2 s_1 \subseteq s_2 \Leftrightarrow (\forall x x \in s_1 \Rightarrow x \in s_2)$
- $\forall s_1, s_2 (s_1 = s_2) \Leftrightarrow (s_1 \subseteq s_2 \wedge s_2 \subseteq s_1)$
- $\forall x, s_1, s_2 x \in (s_1 \cap s_2) \Leftrightarrow (x \in s_1 \wedge x \in s_2)$
- $\forall x, s_1, s_2 x \in (s_1 \cup s_2) \Leftrightarrow (x \in s_1 \vee x \in s_2)$

Inference in FOL

Inference in FOL is complicated!

1. **Reduction to propositional logic** and then use propositional logic inference.
2. **Directly do inference on FOL (or a subset like definite clauses)**
 - Unification: Combine two sentences into one.
 - Forward Chaining for FOL
 - Backward Chaining for FOL
 - Logical programming (e.g., Prolog)