
CS 5/7320
Artificial Intelligence

Automated Planning:
Hierarchical Planning and
Monitoring

AIMA Chapter 11

Slides by Michael Hahsler
with figures from the AIMA textbook

Online Material
This work is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Contents

Classical Planning

Hierarchical Planning

Monitoring and Replaning

Classical Planning
Using Planning Domain Definition Languages

Classical Planning

• Find a sequence of actions to accomplish a goal in a discrete,
deterministic, static, fully observable environment.

• Options we have already discussed:
• Chapter 3: Search with a heuristic for informed search.

• Chapter 7: Propositional logic with custom code.

• Issue: Large state space.

• Solution: Factored state representation using a Planning Domain
Definition Language (PDDL) + Action schemas

Planning Domain Definition Language (PDDL)

• Factored state description: a conjunction of ground atomic fluents (in 1-
conjunctive normal form; 1-CNF).

• Action Schema (=precondition-effect description)

• Action 𝑎 is applicable to state 𝑠 if 𝑠 entails the precondition of 𝑎.

• The effect of 𝑎 on 𝑠 is to remove the negated fluents and adds the positive
fluents.

RESULT 𝑠, 𝑎 = 𝑠 − DEL 𝑎 ∪ ADD(𝑎))

• The goal is just like a precondition. E.g., 𝐴𝑡 𝑃𝑙𝑎𝑛𝑒1, 𝑆𝐹𝑂 ∧ 𝐴𝑡(𝑃𝑙𝑎𝑛𝑒2, 𝐽𝐹𝐾)

𝐴𝑐𝑡𝑖𝑜𝑛(𝐹𝑙𝑦(𝑝, 𝑓𝑟𝑜𝑚, 𝑡𝑜)),
 PRECOND: 𝑃𝑙𝑎𝑛𝑒 𝑝 ∧ 𝐴𝑖𝑟𝑝𝑜𝑟𝑡 𝑓𝑟𝑜𝑚 ∧
 𝐴𝑖𝑟𝑝𝑜𝑟𝑡 𝑡𝑜 ∧ 𝐴𝑡 𝑝, 𝑓𝑟𝑜𝑚
 EFFECT: ¬ 𝐴𝑡 𝑝, 𝑓𝑟𝑜𝑚 ∧ 𝐴𝑡(𝑝, 𝑡𝑜)

DEL() ADD()

an aspect of the world that
can change over time

Example: Block World

Algorithm Options

a) Forward state-space search: Action schema represents the transition model. Perform
regular BFS/DFS search. Often A* with a heuristics is used to deal with the state space
size.

b) Backward search (= regression search): keeps the branching factor low. Issue: How do
we define heuristics?

c) Convert the PDDL description into propositional form and use an efficient solver for the
Boolean satisfiability problem (SAT).

Example: maze
State: 𝑃𝑜𝑠𝑋 𝑥 ∧ 𝑃𝑜𝑠𝑌 𝑦

Heuristic: Ignore
precondition that checks
for walls

A* Heuristics for Planning
Use the factored state description to calculate a heuristic
function ℎ(𝑠) that estimates the distance from 𝑠 to the
goal. If it is admissible (does not overestimate the
distance), then A* can be used.

Example relaxations to create a heuristic:
• Ignore preconditions: any action can be used in any

state
• Ignore delete-list: no negative effects, problem

progresses monotonically towards the goal.
• Serializable subgoals: subgoals can be achieved

without undoing a previous subgoal.
• State abstraction to reduce the number of states. E.g.,

ignore some fluents.

Hierarchical Planning
Manage complexity using high-level actions.

High-level Actions

• A high-level action (HLA) solves a problem or a subproblem in one step.

• An HLA has one or several refinements into a sequence of HLAs or
primitive actions.

HLA

HLA HLA HLA HLA HLA …

…𝑎 𝑎 𝑎 𝑎 𝑎 “Implementation” with only primitive actions

R
ef

in
em

en
t

• Reasoning and search for HLAs reduces the search space.
• A top-level HLA achieves the goal if at least one implementation

achieves the goal.

Example: Refinement

• Two refinements for the HLA 𝐺𝑜(𝐻𝑜𝑚𝑒, 𝑆𝐹𝑂) to go from home to
the SFO airport:

• Since both refinements achieve the goal, the agent can choose which
implementation of the HLA to use.

Option 1: Search for Primitive Solutions

• The top HLA is often just “Act” and the agent needs to find an implementation
that achieves the goal.

• Classical Planning
• For each primitive action, provide a refinement of 𝐴𝑐𝑡 with steps [𝑎𝑖 , 𝐴𝑐𝑡].
• This can recursively build any sequence of actions.
• To stop the recursion, define:

• Issue: This approach must search through all possible sequences!

• Improvement:
• Reduce the number of needed refinements + increase the number of steps in each

refinement.

𝑅𝑒𝑓𝑖𝑛𝑒𝑚𝑒𝑛𝑡(𝐴𝑐𝑡),
 PRECOND: goal is reached
 STEPS: []

Option 1: Search for Primitive Solutions –
BFS Implementation

Option 2: Searching for Abstract Solutions

• Issue: Search for primitive solutions has to refine all HLAs all the way to primitive
actions to determine if a plan is workable.

• Idea: Determine what HLAs do.
• Write precondition-effect descriptions for HLAs (this is difficult because of neg. effects!)
• This results in an exponential reduction of the search space.

• Reachable set: the set of states reachable with a sequence of HLAs [ℎ1, ℎ2] in
state 𝑠.

𝑅𝐸𝐴𝐶𝐻 𝑠, ℎ1, ℎ2 = ራ

𝑠′=𝑅𝐸𝐴𝐶𝐻(𝑠,ℎ1)

𝑅𝐸𝐴𝐶𝐻 𝑠′, ℎ2

A sequence of HLAs achieves the goal if its reachable set intersects the goal set.

• Typical implementation:
1. Use a simplified (optimistic) version of precondition-effect descriptions to find a high-

level plan that works.
2. Check if a refinement of that plan that works really exists. If not, go back to 1.

Conclusion

• High-level actions are a powerful concept for dealing with large
search spaces/search trees.

• Example:

Top high-level action:
A sequence of second-level
HLAs.

Second-level HLA:
Go to the next intersection

Example Implementation:
[E, E, N, N, E, E, E]

This leads to a much smaller
state space and search tree!

Actions: {N, E, S, W}

Monitoring and
Replanning
Planning and Acting in Partially Observable, Nondeterministic, and
Unknown Environments

Belief States

• For nondeterministic or partially observable environments we need belief
states.

• A belief state is a set of possible physical states the agent might be in given
its current knowledge.

• The belief state concept needs to be extended to the factored state
representation.
• A belief state becomes a logical formula of fluents.
• Fluents that do not appear in the formula are unknow.

Technical note: If we manage to keep the belief state in 1-CNF (1-conjunctive normal
form, i.e., fluents are combined with ANDs), then the complexity is reduced from being
exponential in the number of fluents to linear!

Observability: Percept Schema

• For partially observable environments, we need to be able to define what
percepts the agent can get when.

• The agent uses a percept schema to reason about percepts that it can obtain
during executing a plan.

• Example: Whenever the agent sees an object, then it will perceive its color.

The agent can now reason that it needs to get an object inView to see the
color.

• Percept schemata and observability
• Fully observable: Percept schemas have no preconditions.
• Partially observable: Some percepts have preconditions.
• Sensorless agent: has no percept schemas.

𝑃𝑒𝑟𝑐𝑒𝑝𝑡(𝐶𝑜𝑙𝑜𝑟(𝑥, 𝑐)),
 PRECOND: 𝑂𝑏𝑗𝑒𝑐𝑡 𝑥 ∧ 𝑖𝑛𝑉𝑖𝑒𝑤(𝑥)

Observability: Sensorless Planning

• We assume the underlying planning problem is deterministic.

• Similar to sensorless search in Chapter 4. Differences:
• Transition model is a set of action schemata.

• Belief state is represented as a logical formula where unknown fluents are
missing.

• Update:

b′ = RESULT 𝑏, 𝑎 = {𝑠′: 𝑠′ = 𝑅𝐸𝑆𝑈𝐿𝑇𝑃 𝑠, 𝑎 and 𝑠 ∈ 𝑏}

𝑅𝐸𝑆𝑈𝐿𝑇_𝑃 represents the physical transition model which adds positive and negative
literals to the state description. The state description becomes more and more complete.

Determinism & Observability:
Contingency Planning

• We can create a conditional plan for partially observable planning
problems and non-deterministic problems.

• We already have introduced conditional plans in Chapter 4 and just
need to augment it by:
• Action schemata instead of a transition function.
• Percept schemata to reason about how to get needed percepts.
• The state has a factored representation as facts in 1-CNF.

• Use AND-OR search over belief states.

• Issues:
• Contingency plans become very complicated with non-deterministic effects

like failures in actions or percepts. E.g., moving north fails 1 out of 100 times.
• Plan fails with incorrect model of the world. E.g., actions with missing

preconditions or missing effects, missing fluents, exogenous effects.

→ Online Planning

Execution Monitoring and Replanning

• Perform regular planning, but replan when plan execution fails.

• Requires execution monitoring to determine the need for
replanning. The agent can perform:
• Action monitoring: Only execute the action if the preconditions are met.

• Plan monitoring: Verify that the remaining plan will still succeed.

• Goal monitoring: Check if a better set of goals has become available.

• Large contingency plans can often be made simpler by having unlikely
branches just say “REPLAN.”
E.g., Chess: don’t plan for very unlikely moves of the opponent.

Example: Plan Monitoring with Repair

1. Initial plan

2. Failure detected:
Should be in state E.
Remaining plan will

not work.

+ Continuation3. Repair

Actual
path taken

Summary

• Action schemata make
specifying the transition function
easier.

• Hierarchical planning lets us
deal with the exponential size of
the state space. The agent can
reason at a more abstract level
of high-level actions and the
states are typically discrete.

• Online planning with
monitoring and replanning is
• very flexible
• can deal with many types of issues

(sensor/actuator failure, imperfect
models of the environment)

• Can make conditional plans smaller
by omitting unlikely paths and
leaving them for later replanning.

	Introduction
	Slide 1: CS 5/7320 Artificial Intelligence Automated Planning: Hierarchical Planning and Monitoring AIMA Chapter 11
	Slide 2: Contents

	Classical Planning
	Slide 3: Classical Planning
	Slide 4: Classical Planning
	Slide 5: Planning Domain Definition Language (PDDL)
	Slide 6: Example: Block World
	Slide 7: Algorithm Options

	Hierarchical Planning
	Slide 8: Hierarchical Planning
	Slide 9: High-level Actions
	Slide 10: Example: Refinement
	Slide 11: Option 1: Search for Primitive Solutions
	Slide 12: Option 1: Search for Primitive Solutions – BFS Implementation
	Slide 13: Option 2: Searching for Abstract Solutions
	Slide 14: Conclusion

	Monitoring and Replanning
	Slide 15: Monitoring and Replanning
	Slide 16: Belief States
	Slide 17: Observability: Percept Schema
	Slide 18: Observability: Sensorless Planning
	Slide 19: Determinism & Observability: Contingency Planning
	Slide 20: Execution Monitoring and Replanning
	Slide 21: Example: Plan Monitoring with Repair

	Wrap up
	Slide 22: Summary

