CS 5/7320

Artificial Intelligence

Automated Planning:
Hierarchical Planning and
Monitoring

AIMA Chapter 11

Slides by Michael Hahsler
with figures from the AIMA textbook

L X
This work is licensed under a Creative Commc o'l s :
BY sa Attribution-ShareAlike 4.0 International Licens : p———— . Online Material

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Contents

Classical Planning

Hierarchical Planning

Monitoring and Replaning

| T—

Classical Planning

Using Planning Domain Definition Languages

Classical Planning

* Find a sequence of actions to accomplish a goal in a discrete,
deterministic, static, fully observable environment.

* Options we have already discussed:
* Chapter 3: Search with a heuristic for informed search.
» Chapter 7: Propositional logic with custom code.

* |[ssue: Large state space.

* Solution: Factored state representation using a Planning Domain
Definition Language (PDDL) + Action schemas

Planning Domain Definition Language (PDDL)

an aspect of the world that
can change over time

* Factored state description: a conjunction of ground atomic fluents (in 1-
conjunctive normal form; 1-CNF).

* Action Schema (=precondition-effect description)

Action(Fly(p, from,to)),
PRECOND: Plane(p) A Airport(from) A
Airport(to) A At(p, from)
EFFECT: = At(p, from) A At(p, to)

L)\ J

DEL() ADD()

* Action a is applicable to state s if s entails the precondition of a.

. }'Ihe effect of a on s is to remove the negated fluents and adds the positive
uents.

RESULT(s, @) = (s — DEL(a)) U ADD(a))

 The goal is just like a precondition. E.g., At(Plane;, SFO) A At(Plane,, JFK)

Example: Block World

A

| B

<]
—

Start State Goal State

Init(On(A, Table) A On(B, Table) A On(C, A)

N Block(A) N Block(B) A Block(C) A Clear(B) A Clear(C) N Clear(Table))
Goal(On(A,B) A On(B,C))
Action(Move(b, x,y),

PRECOND: On(b,z) A Clear(b) N Clear(y) N Block(b) N Block(y) A

(b#x) A (b£y) A (z#y),

EFFECT: On(b,y) A Clear(x) A =On(b,z) N —Clear(y))
Action(MoveToTable(b, x),

PRECOND: On(b,x) A Clear(b) N Block(b) N Block(x),

EFFECT: On(b, Table) A Clear(x) A =On(b,z))

Figure 11.4 A planning problem in the blocks world: building a three-block tower. One
solution is the sequence [MoveToTable(C, A), Move(B, Table, C'), Move(A, Table, B)].

Algorithm Options

a) Forward state-space search: Action schema represents the transition model. Perform
regular BFS/DFS search. Often A* with a heuristics is used to deal with the state space

size.

b) Backward search (= regression search): keeps the branching factor low. Issue: How do

we define heuristics?

c) Convert the PDDL description into propositional form and use an efficient solver for the

Boolean satisfiability problem (SAT).

A* Heuristics for Planning
Use the factored state description to calculate a heuristic
function h(s) that estimates the distance from s to the
goal. If it is admissible (does not overestimate the
distance), then A* can be used.

Example relaxations to create a heuristic:
* lIgnore preconditions: any action can be used in any

state

lgnore delete-list: no negative effects, problem
progresses monotonically towards the goal.
Serializable subgoals: subgoals can be achieved
without undoing a previous subgoal.

State abstraction to reduce the number of states. E.g.,
ignore some fluents.

Example: maze
State: PosX(x) A PosY (y)

Heuristic: Ignore
precondition that checks
for walls

Hierarchical Planning

Manage complexity using high-level actions.

High-level Actions

* A high-level action (HLA) solves a problem or a subproblem in one step.

* An HLA has one or several refinements into a sequence of HLAs or
primitive actions.

m a a a XX “Implementation” with only primitive actions

Reasoning and search for HLAs reduces the search space.

* A top-level HLA achieves the goal if at least one implementation
achieves the goal.

Refinement

Example: Refinement

* Two refinements for the HLA Go(Home, SFO) to go from home to
the SFO airport:

Refinement(Go(Home, SFO),
STEPS: [Drive(Home, SFOLongTermParking).
Shuttle(SFOLongTermParking, SFO)))
Refinement(Go(Home, SFO),
STEPS: [Taxi(Home, SFO))|)

* Since both refinements achieve the goal, the agent can choose which
implementation of the HLA to use.

Option 1: Search for Primitive Solutions

* The top HLA is often just “Act” and the agent needs to find an implementation
that achieves the goal.

* Classical Planning
* For each primitive action, provide a refinement of Act with steps [a;, Act].
* This can recursively build any sequence of actions.
* To stop the recursion, define:

Refinement(Act),
PRECOND: goal is reached
STEPS: []

* Issue: This approach must search through all possible sequences!

* Improvement:

* Reduce the number of needed refinements + increase the number of steps in each
refinement.

Option 1: Search for Primitive Solutions —
BFS Implementation

function HIERARCHICAL-SEARCH(problem, hierarchy) returns a solution or failure

frontier < a FIFO queue with [Acr] as the only element
while true do
if [S-EMPTY(frontier) then return failure
plan <— POP(frontier) / / chooses the shallowest plan in frontier
hla < the first HLA in plan, or null if none
prefiz, suffir + the action subsequences before and after hla in plan
outcome <— RESULT(problem.INITIAL, prefix)
if hla 1s null then // so plan is primitive and outcome is its result
if problem.IS-GOAL(outcome) then return plan
else for each sequence in REFINEMENTS(hla, outcome, hierarchy) do
add APPEND(prefix, sequence, suffix) to frontier

Figure 11.8 A breadth-first implementation of hierarchical forward planning search. The
initial plan supplied to the algorithm is [Acz]. The REFINEMENTS function returns a set of
action sequences, one for each refinement of the HLA whose preconditions are satisfied by
the specified state, outcome.

Option 2: Searching for Abstract Solutions

* Issue: Search for primitive solutions has to refine all HLAs all the way to primitive
actions to determine if a plan is workable.

* ldea: Determine what HLAs do.
* Write precondition-effect descriptions for HLAs (this is difficult because of neg. effects!)
* This results in an exponential reduction of the search space.

* Reachable set: the set of states reachable with a sequence of HLAs [hq, h5] in

state s.
REACH(s, [hy, h,]) = U REACH(s', h,)
s'=REACH(s,hq)
A sequence of HLAs achieves the goal if its reachable set intersects the goal set.

* Typical implementation:

1. Use a simplified (oitimistic) version of precondition-effect descriptions to find a high-
level plan that works.

2. Check if a refinement of that plan that works really exists. If not, go back to 1.

Conclusion

* High-level actions are a powerful concept for dealing with large
search spaces/search trees.

* Example:

Actions: {N, E, S, W}

Top high-level action:
A sequence of second-level
HLAs.

Second-level HLA:
Go to the next intersection

Example Implementation:
[El El NI Nl EI El E]

This leads to a much smaller
state space and search tree!

- —

Monitoring ana '

Replanning

Planning and Acting in Partially Observable, Nondeterministic, and
Unknown Environments

Belief States

* For nondeterministic or partially observable environments we need belief
states.

* A belief state is a set of possible physical states the agent might be in given
its current knowledge.

* The belief state concept needs to be extended to the factored state
representation.
* A belief state becomes a logical formula of fluents.
* Fluents that do not appear in the formula are unknow.

Technical note: If we manage to keep the belief state in 1-CNF (1-conjunctive normal
form, i.e., fluents are combined with ANDs), then the complexity is reduced from being
exponential in the number of fluents to linear!

Observability: Percept Schema

* For partially observable environments, we need to be able to define what
percepts the agent can get when.

* The agent uses a percept schema to reason about percepts that it can obtain
during executing a plan.

* Example: Whenever the agent sees an object, then it will perceive its color.

Percept(Color(x,c)),
PRECOND: Object(x) A inView(x)

The agent can now reason that it needs to get an object inView to see the
color.

* Percept schemata and observability
* Fully observable: Percept schemas have no preconditions.
 Partially observable: Some percepts have preconditions.
» Sensorless agent: has no percept schemas.

Observability: Sensorless Planning

* We assume the underlying planning problem is deterministic.

 Similar to sensorless search in Chapter 4. Differences:
* Transition model is a set of action schemata.
 Belief state is represented as a logical formula where unknown fluents are

missing.
e Update:

b’ = RESULT(b,a) = {s’":s' = RESULTp(s,a) and s € b}

RESULT _P represents the physical transition model which adds positive and negative
literals to the state description. The state description becomes more and more complete.

Determinism & Observability:
Contingency Planning

* We can create a conditional plan for partially observable planning
problems and non-deterministic problems.

* We already have introduced conditional plans in Chapter 4 and just
need to augment it by:
* Action schemata instead of a transition function.
* Percept schemata to reason about how to get needed percepts.
* The state has a factored representation as facts in 1-CNF.

e Use AND-OR search over belief states.

* |[ssues:

* Contingency plans become very complicated with non-deterministic effects
like failures in actions or percepts. E.g., moving north fails 1 out of 100 times.

 Plan fails with incorrect model of the world. E.g., actions with missing
preconditions or missing effects, missing fluents, exogenous effects.

— Online Planning

Execution Monitoring and Replanning

e Perform regular planning, but replan when plan execution fails.

* Requires execution monitoring to determine the need for
replanning. The agent can perform:
* Action monitoring: Only execute the action if the preconditions are met.
* Plan monitoring: Verify that the remaining plan will still succeed.
* Goal monitoring: Check if a better set of goals has become available.

 Large contingency plans can often be made simpler by having unlikely

branches just say “REPLAN.”
E.g., Chess: don’t plan for very unlikely moves of the opponent.

Example: Plan Monitoring with Repair

1. Initial plan

Actual
path taken

2. Failure detected: P + Continuation

Should be in state E.
Remaining plan will

X continuation

not work.

Figure 11.12 At first, the sequence “whole plan” is expected to get the agent from S to G.
The agent executes steps of the plan until it expects to be in state F/, but observes that it is
actually in O. The agent then replans for the minimal repair plus continuation to reach G.

Summary

e Action schemata make
specifying the transition function
easier.

 Hierarchical planning lets us
deal with the exponential size of
the state space. The agent can
reason at a more abstract level
of high-level actions and the
states are typically discrete.

* Online planning with
monitoring and replanning is
* very flexible

* can deal with many types of issues
(sensor/actuator failure, imperfect
models of the environment)

* Can make conditional plans smaller
by omitting unlikely paths and
leaving them for later replanning.

	Introduction
	Slide 1: CS 5/7320 Artificial Intelligence Automated Planning: Hierarchical Planning and Monitoring AIMA Chapter 11
	Slide 2: Contents

	Classical Planning
	Slide 3: Classical Planning
	Slide 4: Classical Planning
	Slide 5: Planning Domain Definition Language (PDDL)
	Slide 6: Example: Block World
	Slide 7: Algorithm Options

	Hierarchical Planning
	Slide 8: Hierarchical Planning
	Slide 9: High-level Actions
	Slide 10: Example: Refinement
	Slide 11: Option 1: Search for Primitive Solutions
	Slide 12: Option 1: Search for Primitive Solutions – BFS Implementation
	Slide 13: Option 2: Searching for Abstract Solutions
	Slide 14: Conclusion

	Monitoring and Replanning
	Slide 15: Monitoring and Replanning
	Slide 16: Belief States
	Slide 17: Observability: Percept Schema
	Slide 18: Observability: Sensorless Planning
	Slide 19: Determinism & Observability: Contingency Planning
	Slide 20: Execution Monitoring and Replanning
	Slide 21: Example: Plan Monitoring with Repair

	Wrap up
	Slide 22: Summary

