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Example: Catching a Flight with a Logical Agent

Let action A, = leave for airport t minutes before flight

Question: What action A, get me there on time?

Problems:
* Partial observability (road state, other drivers' plans, etc.)
* Noisy sensors (traffic reports)
* Uncertainty in action outcomes (flat tire, etc.)
*  Complexity of modeling and predicting traffic

Logic leads to the following conclusions:

A,: will get me there on time if there is no accident on the bridge and it doesn't
rain and my tires remain intact, etc., etc.

A,,s8uarantees to get there in time, but who lives forever?

Logic often creates conclusions that are too weak for effective decision-making.

Uncertainty is a problem for logical agents!



Example: Catching a Flight with Belief States

Let action A, = leave for airport t minutes before flight

Question: What action A, get me there on time?

Belief states
* Are used to deal with uncertainty in the environment.
* Are the set of states the agent believes it could be in.

e Often are the result of nondeterministic actions:

Results(at home, A;) = {on time, missed flight}

* Issue: The resulting belief state is the same for any t. We only
know if we observe that we caught the plane afterwards. This not
very helpful!

We need a way to specify how likely it is that we will end up at the airport after

the action!



Example: Catching a Flight with Probabilities

Probabilities: Suppose the agent believes the following:

P(ontime|A,s) = 0.04
P(ontime | Agy) = 0.80
P(ontime | A{yy) = 0.99
P(on time |Aj440) = 0.9999

A probabilistic belief states as a probability distribution
over states:

Results(at home, Agg) = {on time: 0.8,
missed flight: 0.2,

at home: 0}

Plontime) [N 0.99  0.9999
P (missed flight) 0.96 0.2 001  1E-04

0 0 0 0

Belief states

Which action should the agent choose?



Making a Decision Under Uncertainty
1?

Given outcome probabilities, which action should the agent choose?

* Depends on preferences for missing a flight vs. time spent waiting.

Utility theory represents preferences for different outcome using a utility
function U(outcome).

Decision Theory = Probability Theory + Utility Theory

The agent should choose actions that lead to an outcome that maximizes

the expected utility.
Remember: A rational agent picks the
[U(Ap] i

a = argmaxy, E action that maximizes the expected utility

a = argmax,ep E(U | @)

The outcome depends on the action taken:
U(A;) = U(reached state) — Cost(action)

Example:

Belief states with probabilities Utili
tility structure
I ="

Pontime) [N 0.99  0.9999 + ] = 546.0
P (missed flight 0.96 0 2 001  1E-04 U(missed flight) Bl 862.2
P(at home) 0 0 0 0 Cost(per minute) 1 -443.9

E[U(A;)] = P(ontime|A;) U(ontime | A;) + P(missed flight|A;)U(missed flight |A;)
E[U(A150)] = 0.99 x (1000 — 120 X 1) + 0.01 x (—1000 — 120 x 1) = 862.4
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Sources of Uncertainty

Probabilistic assertions summarize effects of:

e |ntrinsically random behavior: no
patterns (not very common)

e Lack of knowledge:
partial observability,
stochastic transitions, etc.

e Convenience: It is
too hard to calculate
the exact answer.

Example: What is the source of uncertainty for a coin toss?



What are Probabilities?

e Frequentism (Objective; Positivist)

Probabilities are long-run relative frequencies determined by observation.

e For example, if we toss a coin many times, P(heads) is estimated as the
proportion of the time the coin will come up heads.

e But what if we are dealing with events that only happen once? E.g., what is the
probability that a Republican will win the presidency in 2024? How do we
define comparable elections? Reference class problem.

el Bayesian Statistics (Subjective)

Probabilities are degrees of belief based on prior knowledge and updated by
evidence.

Provides tools to:
e Assign belief values to statements without evidence
e Update our degrees of belief given observations = Learning

Both concepts are often used together.
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Probability Theory Recap

» Notation:  Prob. of anevent P(X = x) = Px(x) = P(x)
Prob. distribution P(X) = (P(X = x1),P(X = x3), ..., P(X = xp,))

* Product rule P(x,y) = P(x|y)P(y)
= Chain rule P(Xy, Xy, o, X)) = P(X)P(X5 X )P(X5|Xy, X5) ...
= [Iiz, P(X_i| X1, o, Xio1)
. . _ Pxy) _
= Conditional probability P(x|y) = o) aP(x,y)
= Marginal distribution given P(X,Y) (joint probability distribution)
P(X) =2, P(X,y) (marginalizing outY)

" Independence
= X1Y: X,Y areindependent (written as X Il Y) if and only if:
vx,y: P(x,y) = P(x)P(y)

" X L Y|Z: X and Y are conditionally independent given Z if and only if:
vx,y,z: P(x,y|z) = P(x|z)P(y|z)




Bayesian
Updates

Learning from Evidence

e o 4-’ Rev. Thomas Bayes
B, e (1702-1761)



Bayes’ Theorem: The Bayesian Update Rule

The product rule gives us two ways to factor a joint distribution for
events X = xand E = e:

P(x,e) =P(x|e)P(e) = P(e | x)P(x)

Posterior Prob.

Therefore, P(x | e) = P(;l(g acd

Why is this useful? Add evidence

* We can update our beliefs about an event x based on new evidence e.
P(e|x) P(x)
P(e)

* Updaterule P(x) «

Written a distribution over all values for X: P(X | e) = P(eg?e’;(x)




Example: Getting Married in the Desert

New Prior probability of rain
P(x)=5/365=0.014

Evidence e

Marie is getting Warried tomorro an outdoor ceremony in the desert.
In recent years, it Yas rained only 5 days each year. Unfortunately, the
weatherman has predicted rain for tomorrow. When it actually rains, the
weatherman correctly forecasts rain 90% of the time. When it doesn't
rain, he incorrectly forecasts rain 10% of the hat is Marie’s belief
for the probability that it will rain on her wedding day"

. " Likelihood
Bayesian update: P(x | e) = % POSte;‘)‘Er irO;ab'l'ty P(e | x)
x | e):

P(Predict|Rain)P(Rain)
P (Predict)
_ P (Predict|Rain)P(Rain)
~ P(Predict|Rain)P(Rain) + P(Predict|—Rain)P(—Rain)
0.9 x 0.014
X'\ RYYEE The weather forecast changes her belief from

0.9 x0.014 + 0.1 x 0.986 0.014 to 0.111. She thinks that the chance of rain
tomorrow is now about 10 times larger!

P(Rain|Predict) =

The decision depends on the utility: How much
does Marie value no rain on her wedding day vs.
moving the venue?




Bayesian Intelligent Agents

This is a type of utility-based agent is also called a decision-theoretic agent.

Approach

Agent function

Estimate prior +Utili
probabilities Update belief using Utility

Bayes’ rule with new #
Estimate

evidence

Likelihoods

Predict the belief states
given different actions
+
Use utility information to
calculate expected utilities.

Agent’s knowledge. We
typically use frequentist
estimates (e.g., counting)
and store them as a model.

Choose the action that
maximizes the expected
utility.




~ Independence
between Events




Issues with Making Decisions using Bayes’ Rule
Approach

Estimate prior
probabilities

Estimate

+Utility

—

Update belief using
Bayes’ rule with new

evidence

Likelihoods

Issue: The table representing the likelihoods is typically way too large!

* For n random variables (evidence and outcome) with a domain size of k each, we have a
table of size O(k™). This is a problem for
* storing the table, and
* estimating the probabilities from data (we need lots of data).

Solution:

* Decomposition of joint probability distributions using conditional independence between
events.

* If we can identifg conditional independence, then we can break the large table into several
much smaller tables.



Independence Between Events

* Two events A and B are independent (A 1L B) if and only if
P(A,B) = P(A) P(B)

* This is equivalentto P(A | B) = PIE?I’S) = P(A)and P(B | A) = P(B)

* Independence is an important simplifying assumption for modeling.

Dentist Example: ,
Cavity

Toothache Catch .
Weather Weather is not

related to the
decomposes .
inte l other variables!

Cavity
Toothache  Catch

P(Cavity, Weather) = P(Cavity)P(Weather)
P(Cavity, Weather)

P(Weather)

Independence

P(Cavity | Weather) = = P(Cavity)



Decomposition of the Joint Probability Distribution
With Independence

* Independence: The joint probability can be

decomposed iw Coiny veeees Coin,,
P(Coing,...,Coin,) = ; w
decomposes
P(Coiny) X -+ X P(Coin,) = ﬂP(Coini) into l

=1

* The joint probability is a table with2® -1  ( Coiny ) ----..

entries (all combinations of heads and tails).
* Independence reduces the numbers needed to

specify the joint distribution to n probabilities 0(2") - 0(n)

(one for each coin).

* Side note: If we have identical (iid) coins, then
we even only need 2 numbers, the probability
of H and the number of coins.



Conditional Independence

* Conditional independence: A and B are conditionally independent given
C (also writtenas A IL B | C) if, and only if,

P(A,B|C) = P(A|C)P(B|C)

* Meaning: Once we know C, learning A gives us no extra information about B.

Dentist Example:

 |If we know that the patient has a cavity, then the event that the probe catches does
not depend on whether he/she has a toothache:

P(Catch [ Toothache, Cavity) = P(Catch | Cavity)
* Therefore, Catch is conditionally independent of Toothache given Cavity

* Note: If we don’t know about the cavity, then toothache is still a good indication
of that that the probe will catch in a potential cavity.



Decomposition of the Joint Probability Distribution
With Conditional Independence

* Conditional independence 6@
simplifies the chain rule:

P(Toothache, Catch, Cavity) =
P(Cavity) P(Catch | Cavity) P(Toothache | G, Cavity) =
P(Cavity) P(Catch | Cavity) P(Toothache | Cavity)

If each variable only depends on
a small number of other

variables:
0(2™) - 0(n)




Bayesian Networks

Bayesian networks are a graphical method to specify dependence
between random variables. This very useful technique will be
discussed in detail later in this course.

* In many practical applications, each variable only depends on a small
number of other variables.

* Conditional independence can reduce the space requirements to store the
joint probability distribution from exponential to linear:

02") - 0(n)

* This means we can work efficiently with large models.



Making Simple Decisions Under Uncertainty



Probabilistic Inference

Suppose the agent must repeatedly guess the value of
an unobserved query variable X given some observed
evidence E = e and we assume X probabilistically
causes E.

Example:

x € {dog, zebra, cat}, e = image features

What is the best guess X?

Notation: We use X for an estimate and x™ for the
optimal estimate.

1




The Optimal Decision Rule: MAP

* Assumption: The agent expresses the utility of the decision as a loss
fugction, which is O if the value of X is guessed correctly, and 1
otherwise.

~ 1if X # x, and
L(x, %) = '
(%, %) {O otherwise.

* The value for X that minimizes the expected loss is the one that has
the greatest posterior probability given the evidence e.

X=x"=argmax, P(X = x|E = e)

This is called the MAP (maximum a posteriori} decision.
Choosing the most likely x given e is optimal for 0-1 loss!

The error of the Bayes decision rule is called the Bayes Error Rate.
No classifier can do better!



MAP: Maximum A Posteriori Decision

+Utility (Loss)

probabilities Update belief using Bayes’ -
Estimate rule with new evidence
Likelihoods

0-1 loss means we should use the value x that has the highest maximum_L
postlerlor ;grgbablllty given the evidence e, i.e., the prediction that most likely leads
to a loss of 0.

Prior Prob.

Posterior Prob. A P(e) is fixed for a

f \ P(e|x)P(x) given evidence.

x* = argmax, P (x|e) = argmax,, (o)

= argmax, P(e|x)P(x)

For comparison: the frequentist maximum x* = argmax, P(e|x)
likelihood decision ignores P(x) L
Likelihood

of observing e given class x



MAP: Example

We observe: e = stripes
What is the animal? x € {zebra, dog, cat}

Posterior Prob.

] P(stripes|x)P(x)

x* = argmax, P (x|e) = argmax,

P(stripes)
= argmax, P(stripes|x)P(x)
\_Y_/

Prior Prob.

likelihood

Zebra: The likelihood P (stripes | zebra 2)|s the highest. But
the decision also depends on the prior P(zebra), the
chance that we see a zebra.

Cat: The likelihood for cats having stripes may be smaller,

but the prior probability of seeing a cat is much higher. Cat
may have a larger posterior probability!




Bayes Classifier

* Suppose we have many different types of observations (evidence,
symptoms, features) I, ..., F;,, that we want to use to decide on an

underlying hypothesis H.

* The MAP decision involves estimating

h* = ArgmaXhey P(fl; e fnlh)P(h)
* How many entries does the tables P(fy, ..., f|h) have?

Answer: If we assume that each feature can take on k values then
the table has O(k™) entries! What if we have 1000s of features?



Naive Bayes Model

* We want to use the MAP decision which involves

estimating
h* = argmaxney P(f1, ..., fulh)P(h) @

* Issue: The likelihood table size grows for n variables
with k different values exponentially with O(k™)

* The naive Bayes model makes the simplifying
assumption that the different features are
conditionally independent given the hypothesis.

This reduces the needed number of probabilities to
O(k X n):

n
h = argmaxpey P(h) Hp(mh)
i=1

* The naive Bayes decision is not optimal.




Example:
Naive Bayesian
Spam Filter




Example: Naive Bayes Spam Filter

Dear Sir. Ok, Iknow this is blatantly OT but 'm
First, | must solicit your confidence in this beginning to go insane. Had an old Dell
transaction, this is by virture of its nature Dimension XPS sitting in the corner and
as being utterly confidencial and top decided to put it to use, | know it was
secret. ... working pre being stuck in the corner, but

when | plugged it in, hit the power nothing
TO BE REMOVED FROM FUTURE happened.

MAILINGS, SIMPLY REPLY TO THIS
MESSAGE AND PUT "REMOVE" IN THE
SUBJECT.

99 MILLION EMAIL ADDRESSES
FOR ONLY $99

Approach

+Utility (Loss)

=

Estimate prior
probabilities

Update belief using Bayes’
rule with new evidence

Likelihoods

To make decisions, we need to:

* Define random variables so we can estimate prior probabilities and likelihoods.
* Class: spam no spam
* Evidence: features of the message.

* Define utility/loss




Message Features: Bag of Words from
Natural Language Processing (NLP)

Dear Sir. Ok, Iknow this is blatantly OT but 'm
First, | must solicit your confidence in this beginning to go insane. Had an old Dell
transaction, this is by virture of its nature Dimension XPS sitting in the corner and
as being utterly confidencial and top decided to put it to use, | know it was
secret. ... working pre being stuck in the corner, but

when | plugged it in, hit the power nothing
TO BE REMOVED FROM FUTURE happened.

MAILINGS, SIMPLY REPLY TO THIS
MESSAGE AND PUT "REMOVE" IN THE
SUBJECT.

99 MILLION EMAIL ADDRESSES
FOR ONLY $99

* Model a document as a vector of binary random variables (W, ..., W,).

* Each random variable represents if a specific word i is present (W; = 1) or
not (W; = 0) in the message.

 Simplifications used by bag-of-words:
* The order of the words in the message is ignored.
* How often a word is repeated is ignored.
* Uses a fixed vocabulary. Unknown words are ignored.



(R

Naive Bayes Spam Filter Using Words AN

* We model the words used in messages as depending on the type of
message (h = spam or not spam), and we use the naive simplifying
assumption that words are conditionally independent given the type of
message:

n
P(message|h) = P(wyq, ..., w,|h) = HP(Wdh)

=1

* Now we can calculate the a posteriori probability after the evidence of
the message as

P(h|Wy, ..., w) o< P(0) [T P(w;h)

\ )
Y Y \ v )

posterior prior  |ikelihoods we do not divide
by P(wy, ..., Wy,)

Note: It is only
proportional since

\

(presents and
absence of words)



Naive Bayes Spam Filter: Decision Making

probabilities Update belief using Bayes’ rule -
Estimate Likelihoods with new evidence

A posteriori
probabilities

Update with words as evidence: are simplified to
L proportional

score(spam) = P(spam) 1_[ P(w;|spam) scores that can

i=1 g be compared

score(—spam) = P(—spam) 1_[ P(w;|—=spam)

i=1 Minimizes 0-1

MAP Decision: h = argmax; P(h|message Loss (number of
mistakes)

Scores are proportional to the probability. That means predict spam if

score(spam) > score(—spam)



Naive Bayes Spam Filter: Parameter Estimation

'y
probabilities Update belief using Bayes’ rule -
Estimate Likelihoods with new evidence
Count in training data: Smoothing for
# of spam messages + 1 low counts.
P(H = spam) =

total # of messages + # of classes
# of spam messages that contain the word + 1

P(w;=1|H = =
(w; | spam) total # of spam messages + # of classes

P(W; = 1| H = spam) P(W; = 1|H = —spam)

the 0.0156 the 0.0210

to 0.0153 to 0.0133

Prior P(H) and : 0.0115 of : 0.0119
spam: 0.33 of 0.0095 2002: 0.0110
—spam: 0.67 you 0.0093 with: 0.0108
a : 0.0086 from: 0.0107

with: 0.0080 and 0.0105

from: 0.0075 a 0.0100

+ likelihoods for the absence of words:
P(W; = 0|H = spam) =1 — P(W; = 1|H = spam)
P(W; = 0|H = -aspam) =1 — P(W; = 1|H = —spam)




summary

Bayesian Intelligent Agent

Estimate prior
probabilities

+Utility

—

Update belief using
Bayes’ rule with new

Estimate
Likelihoods

evidence

This is a type of utility-based agent, also known as a decision-theoretic agent.

It combines:
1. Probability theory to update its belief about outcomes given actions.
2. Utility theory to represent preference for different outcomes.

Bayes’ Theorem provides a general framework for learning functions and decision rules
from data is the goal of Machine Learning.

An issue is that we need to estimate/learn a model _consistin%_o_f an exponentially large set
of all likelihoods. This is essentially the complete joint probability distribution between the
evidence and state random variables!

Much of Al and ML is about overcoming this model size issue by using simplifications, such
as the naive Bayes model.



Appendix: A
Quick Review
of Probability

Theory

Random variables
Events

Joint probabilities
Marginal probabilities

Conditional probabilities




Random Variables

Random Variable

e We describe the (uncertain) state of the world using random variables.
e Random variables are denoted by capital letters.

R: Is it raining?

W: What’s the weather?

Die: What is the outcome of rolling two dice?
e V: What is the speed of my car (in MPH)?

Domain

e Random variables take on values in a domain D.
e Domain values must be mutually exclusive and exhaustive.

R € {True, False}

W € {Sunny, Cloudy, Rainy, Snow}
Die € {(1,1), (1,2), ... (6,6)}

e V€ [0, 200]




Events and Propositions

Probabilistic statements are defined over Events are described using

events, world states or sets of states propositions:

 “Itis raining” e R=True

 “The weather is either cloudy or e W="“Cloudy” vW =
snowy” “Snowy”

e “The sum of the two dice rolls is 11” « D e{(5,6),(6,5)}

 “My caris going between 30 and 50 e 30LS<50

miles per hour”



Probabilities

Probabilities are numbers indicating how likely we think an event (a realization of a
random variable) is. These numbers can be

* Estimated as long-term averages (frequentist approach)

* Indicate a subjective belief (Bayesian approach)

Kolmogorov’s 3 axioms are sufficient to define probability theory:
1. Probabilities are non-negative real numbers.
2.  The probability that at least one atomic event happens is 1 (nothing happens is an event!).
3.  The probability of mutually exclusive events is additive.

The axioms lead to important properties op probabilities (A and B are sets of events):
* Numericbound:0 < P(4) <1
* Monotonicity: if A € B then P(A) < P(B)
 Additionlaw: P(AUB) = P(A) + P(B) — P(ANB)
* Probability of the empty set: P(@) = 0
e Complement rule: P(=4) =1 — P(4)

* Continuous variables need in addition the definition of density functions.



Joint Probability Distributions: Atomic Events

e Atomic event: a complete assignment of values to all random variables.

* For Al: Random variables are the fluents of a factored state description. An
atomic event is a complete specification of the state of the world.

* Atomic events are mutually exclusive and exhaustive.

* Example: if the state consists of only two Boolean variables Cavity and
Toothache, then there are 4 distinct atomic events:
Cavity = false AToothache = false
Cavity = false A Toothache = true
Cavity = true A Toothache = false
Cavity = true A Toothache = true



Joint Probability Distributions

A joint distribution is an assignment of probabilities to every possible
atomic event (state). The distribution is often stored as a table.

Example: Joint probability distribution for a world with two random
variables

Atomic event P Cavity Toothache P

Cavity = false AToothache = false 0.8 False false 0.8
Cavity = false A Toothache = true 0.1 or False True 0.1
Cavity = true A Toothache = false 0.05 True false 0.05
Cavity = true A Toothache = true 0.05 True true 0.05
Sum: 1.00
Notation:

* P(X = x)or PX(x? or P(x) for short, is the probability of the event
that random variable X has taken on the value x.

* P(X) is the distribution of probabilities for all possible values of X.
Often we are lazy or forget to make P bold.



Marginal
Prob. Distr.

Marginal Probability Distributions

Sometimes we are only interested in one variable (part of the state). This
is called the marginal distribution P(Y)

M Cavity, Toothache P

:_
s

'é) Cavity = false AToothache = false 0.8
g Cavity = false A Toothache = true 0.1
; Cavity = true A Toothache = false 0.05
§, Cavity = true A Toothache = true 0.05

Toothache

Cavity = false ? Toothache = false ?

Cavity = true | ? Toothache = true ?




Marginal Probability Distributions 2

Suppose we have the joint distribution P(X,Y) and we want to find
the marginal distribution P(X)

PX=x)=P(X=xAY=y)V---VX=xAY =y,))

=P((x,y1) V-V (x, ) = z P(x,yi)
i=1

Rule: to find P(X = x), sum the probabilities of all atomic events

where X = x. o
This is called “summing out” or “marginalizing out” the other

variables.



Marginal
Prob. Distr.

Marginal Probability Distributions 3

Suppose we have the joint distribution P(X,Y) and we want to find the
marginal distribution P(Y).

Cavity, Toothache P

Cavity = false AToothache = false 0.8
Cavity = false A Toothache = true 0.1

Cavity = true A Toothache = false 0.05

Joint Prob. Distr.

Cavity = true A Toothache = true 0.05

'S A

Toothache

Cavity = false 0.8+0.1=0.9 Toothache = false 0.8+0.5=0.85

Cavity = true | 0.05 +0.05=0.1 Toothache = true 0.1+0.05=0.15




Conditional Probability

* Probability of event cavity given toothache:

P(Cavity = true A Toothache = true)
P(Toothache = true)

P(Cavity = true | Toothache = true) =

* Conditional distribution of random variable A given B

P(A|B) = ”I(;Z‘;)
P(4,B)
P(B)
P(4, B) .
P fraction of B that

is shared with A




Conditional Probability 2 P(A, B)
P(A|B) = P
_.
-g Cavity = false AToothache = false 0.8
Jg Cavity = false A Toothache = true 0.1
% Cavity = true A Toothache = false 0.05
§, Cavity = true A Toothache = true 0.05
RS- Toothache
C @
nEo 5 Cavity = false 0.9 Toothache = false 0.85
g § Cavity = true 0.1 Toothache = true 0.15

What is P(Cavity = true | Toothache = false)?
P(Cavity = true A Toothache = false)

P(Toothache = false)

=0.05/0.85 = 0.059

What is P(Cavity = false | Toothache = true)?
P(Cavity = false A Toothache = true)

= 0.1/0.15 = 0.667
P(Toothache = true) /




Conditional Distributions

Cavity = false AToothache = false
Cavity = false A Toothache = true

Cavity = true A Toothache = false

Joint Prob. Distr.

Cavity = true A Toothache = true

Cavity, Toothache P

0.8

0.1

0.05

0.05

P(4,B)

P(A|B) = P B

A conditional distribution is a distribution over the values of one variable
given fixed values of other variables.

Examples:

Conditional Prob. Distr.

Cavity | Toothache = true

Cavity | Toothache = false

Cavity = false | Toothache = true 0.667 Cavity = false | Toothache = false 0.941

Cavity = true | Toothache = true | 0.333 Cavity = true | Toothache = false | 0.059

Toothache | Cavity = true

Toothache | Cavity = false

Toothache= false | Cavity = true 0.5 Toothache= false | Cavity = false 0.889

Toothache = true | Cavity = true | 0.5

Toothache = true | Cavity = false | 0.111




Cond. Prob.

Normalization Trick

To get the whole conditional distribution P(X | Y = y) at once, select all entries in the
joint distribution matching Y = 7y and renormalize them to sum to one.

Example: Calculate P(Toothache | Cavity = false) from the joint probability distribution:

D_ Cavity = false AToothache = false 0.8
'§ Cavity = false A Toothache = true 0.1
% Cavity = true A Toothache = false 0.05
O | Cavity = true A Toothache = true 0.05

‘ Select P(X,Y = y)

Toothache, Cavity = false

Toothache= false A Cavity = false 0.8 _ _
Sum is the marginal P(Y = y) = 0.9

Toothache = true A Cavity = false | 0.1

‘ Renormalize sum to 1 (= divide by P(Y = y))

Toothache | Cavity = false

Equivalent to
Toothache= false | Cavi'.cy=false 0.889 P(X |Y — y) — 04 P(X, Y = y)
| Toothache = true | Cavity = false | 0.111 | with a = ]_/P(Y — y)

Distr.




Conditional Independence and
the Bayes’ Theorem

* These important concepts are introduced earlier in this module.



Conclusion

* Probability theory has many applications to deal with uncertainty in Al.
Here are some examples:

* Joint probability distribution over the state space: The basis of
reasoning about how likely it is to be in a state.

* Conditional independence makes it possible to work with more
complicated factored state representations (a larger number of fluents).

Marginal distributions to reason about the most likely value of a fluent.
Conditional distributions: Transition probability given a chosen action.
Bayesian updates: Learn (= update the belief) about the current state.

Machine learning is based on decision theory, Bayesian decision making,
and Bayesian updates for learning.
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