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Example: Catching a Flight with a Logical Agent

Let action At = leave for airport t minutes before flight
Question: What action At get me there on time?

Problems:
• Partial observability (road state, other drivers' plans, etc.)
• Noisy sensors (traffic reports)
• Uncertainty in action outcomes (flat tire, etc.)
• Complexity of modeling and predicting traffic

Logic leads to the following conclusions:
• A25 will get me there on time if there is no accident on the bridge and it doesn't 

rain and my tires remain intact, etc., etc.
• AInf guarantees to get there in time, but who lives forever?

Logic often creates conclusions that are too weak for effective decision-making.
Uncertainty is a problem for logical agents!



Example: Catching a Flight with Belief States

Let action At = leave for airport t minutes before flight
Question: What action At get me there on time?

Belief states
• Are used to deal with uncertainty in the environment.  
• Are the set of states the agent believes it could be in.
• Often are the result of nondeterministic actions:

Results(at home,𝐴𝐴𝑡𝑡)  =  {on time, missed flight}

• Issue: The resulting belief state is the same for any 𝑡𝑡. We only 
know if we observe that we caught the plane afterwards. This not 
very helpful!

We need a way to specify how likely it is that we will end up at the airport after 
the action!



Example: Catching a Flight with Probabilities

Probabilities: Suppose the agent believes the following:
  𝑃𝑃 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝐴𝐴25)  =  0.04 

 𝑃𝑃 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝐴𝐴90)  =  0.80 
 𝑃𝑃 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝐴𝐴120)  =  0.99
 𝑃𝑃 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝐴𝐴1440)  =  0.9999 

A probabilistic belief states as a probability distribution 
over states:

Results(at home,𝐴𝐴90)  =  {on time: 0.8, 
                                                   missed flight: 0.2, 
                                                   at home: 0}

Which action should the agent choose?

𝑨𝑨𝟐𝟐𝟐𝟐 𝑨𝑨𝟗𝟗𝟗𝟗 𝑨𝑨𝟏𝟏𝟏𝟏𝟏𝟏 𝑨𝑨𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏
𝑃𝑃(𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) 0.04 0.8 0.99 0.9999
𝑃𝑃(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) 0.96 0.2 0.01 1E-04
𝑃𝑃(𝑎𝑎𝑎𝑎 ℎ𝑜𝑜𝑜𝑜𝑜𝑜) 0 0 0 0

Belief states



Making a Decision Under Uncertainty
Given outcome probabilities, which action should the agent choose?
• Depends on preferences for missing a flight vs. time spent waiting.
• Utility theory represents preferences for different outcome using a utility 

function 𝑈𝑈(𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜).

• Decision Theory = Probability Theory + Utility Theory
• The agent should choose actions that lead to an outcome that maximizes 

the expected utility. 
a = argmax𝐴𝐴𝑡𝑡  𝐸𝐸 𝑈𝑈 𝐴𝐴𝑡𝑡

• The outcome depends on the action taken: 
𝑈𝑈 𝐴𝐴𝑡𝑡 = 𝑈𝑈 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎)

𝑨𝑨𝟐𝟐𝟐𝟐 𝑨𝑨𝟗𝟗𝟗𝟗 𝑨𝑨𝟏𝟏𝟏𝟏𝟏𝟏 𝑨𝑨𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏
𝑃𝑃(𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) 0.04 0.8 0.99 0.9999
𝑃𝑃(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) 0.96 0.2 0.01 1E-04
𝑃𝑃(𝑎𝑎𝑎𝑎 ℎ𝑜𝑜𝑜𝑜𝑜𝑜) 0 0 0 0

Belief states with probabilities

Value
U(𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) 1000
U(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) -1000
Cost(𝑝𝑝𝑝𝑝𝑝𝑝 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) 1

Utility structure

+
𝐸𝐸 𝑈𝑈 𝐴𝐴𝑡𝑡  = 𝑃𝑃 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝐴𝐴𝑡𝑡  𝑈𝑈 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝐴𝐴𝑡𝑡) + 𝑃𝑃 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝐴𝐴𝑡𝑡 𝑈𝑈 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝐴𝐴𝑡𝑡)

𝐸𝐸 𝑈𝑈 𝐴𝐴120 = 0.99 × 1000 − 120 × 1 + 0.01 × −1000− 120 × 1 = 862.4

Example: 

Remember: A rational agent picks the 
action that maximizes the expected utility

𝑎𝑎 = argmax𝑎𝑎∈A 𝐸𝐸 𝑈𝑈 𝑎𝑎) 

=
Exp. Utility

𝑨𝑨𝟐𝟐𝟐𝟐 -901.0
𝑨𝑨𝟗𝟗𝟗𝟗 546.0
𝑨𝑨𝟏𝟏𝟏𝟏𝟏𝟏 862.2
𝑨𝑨𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 -443.9
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Randomness and 
Probability Theory



Sources of Uncertainty

Probabilistic assertions summarize effects of:

• Intrinsically random behavior: no 
patterns (not very common)Randomness

• Lack of knowledge: 
partial observability, 
stochastic transitions, etc.

Ignorance

• Convenience: It is 
too hard to calculate 
the exact answer.

Laziness

Example: What is the source of uncertainty for a coin toss?



What are Probabilities?

Probabilities are long-run relative frequencies determined by observation.
•For example, if we toss a coin many times,𝑃𝑃(ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) is estimated as the 

proportion of the time the coin will come up heads.
•But what if we are dealing with events that only happen once? E.g., what is the 

probability that a Republican will win the presidency in 2024? How do we 
define comparable elections? Reference class problem. 

Frequentism (Objective; Positivist)

Probabilities are degrees of belief based on prior knowledge and updated by 
evidence.

Provides tools to:
•Assign belief values to statements without evidence
•Update our degrees of belief given observations = Learning

Bayesian Statistics (Subjective)
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Both concepts are often used together.



Probability Theory Recap
 Notation: Prob. of an event 𝑃𝑃 𝑋𝑋 = 𝑥𝑥 = 𝑃𝑃𝑋𝑋 𝑥𝑥 =  𝑃𝑃(𝑥𝑥)

                  Prob. distribution 𝑷𝑷 𝑋𝑋 = 𝑃𝑃 𝑋𝑋 = 𝑥𝑥1 ,𝑃𝑃 𝑋𝑋 = 𝑥𝑥2 , … ,𝑃𝑃 𝑋𝑋 = 𝑥𝑥𝑛𝑛

 Product rule   𝑃𝑃 𝑥𝑥,𝑦𝑦 = 𝑃𝑃 𝑥𝑥 𝑦𝑦 𝑃𝑃(𝑦𝑦)
 Chain rule   𝑷𝑷 X1, X2, … , Xn = 𝐏𝐏 X1 𝐏𝐏 X2 X1 𝐏𝐏 X3 X1, X2 …

                  = ∏𝑖𝑖=1
𝑛𝑛 𝑷𝑷(𝑋𝑋_𝑖𝑖|𝑋𝑋1, … ,𝑋𝑋𝑖𝑖−1) 

 Conditional probability  𝑃𝑃 𝑥𝑥 𝑦𝑦 = 𝑃𝑃(𝑥𝑥,𝑦𝑦)
𝑃𝑃(𝑦𝑦)

= 𝛼𝛼𝛼𝛼 𝑥𝑥, 𝑦𝑦

 Marginal distribution given   𝑷𝑷 𝑋𝑋,𝑌𝑌  (joint probability distribution)
     𝑷𝑷 𝑋𝑋 = ∑𝑦𝑦𝑷𝑷(𝑋𝑋, 𝑦𝑦)      (marginalizing out 𝑌𝑌)
 Independence
  𝑋𝑋 ⫫ 𝑌𝑌: 𝑋𝑋,𝑌𝑌 are independent (written as  𝑋𝑋 ⫫ 𝑌𝑌) if and only if: 

∀𝑥𝑥,𝑦𝑦:𝑃𝑃 𝑥𝑥,𝑦𝑦 = 𝑃𝑃 𝑥𝑥 𝑃𝑃(𝑦𝑦)

 𝑋𝑋 ⫫ 𝑌𝑌|𝑍𝑍: 𝑋𝑋 and 𝑌𝑌 are conditionally independent given 𝑍𝑍 if and only if:
∀𝑥𝑥,𝑦𝑦, 𝑧𝑧:𝑃𝑃 𝑥𝑥,𝑦𝑦 𝑧𝑧 = 𝑃𝑃 𝑥𝑥 𝑧𝑧 𝑃𝑃(𝑦𝑦|𝑧𝑧)



Bayesian 
Updates

Learning from Evidence

Rev. Thomas Bayes
(1702-1761)



Bayes’ Theorem: The Bayesian Update Rule

The product rule gives us two ways to factor a joint distribution for 
events 𝑋𝑋 = 𝑥𝑥 and 𝐸𝐸 = 𝑒𝑒:

𝑃𝑃 𝑥𝑥, 𝑒𝑒 = 𝑃𝑃 𝑥𝑥 𝑒𝑒 𝑃𝑃 𝑒𝑒 = 𝑃𝑃 𝑒𝑒 𝑥𝑥 𝑃𝑃(𝑥𝑥)

Therefore, 𝑃𝑃 𝑥𝑥 𝑒𝑒) = 𝑃𝑃 𝑒𝑒|𝑥𝑥  𝑃𝑃(𝑥𝑥)
𝑃𝑃 𝑒𝑒  

Why is this useful?
• We can update our beliefs about an event 𝑥𝑥 based on new evidence 𝑒𝑒. 

• Update rule 𝑃𝑃 𝑥𝑥 ← 𝑃𝑃 𝑒𝑒|𝑥𝑥  𝑃𝑃(𝑥𝑥)
𝑃𝑃 𝑒𝑒  

Written a distribution over all values for 𝑋𝑋:    𝑷𝑷 𝑋𝑋 𝑒𝑒) = 𝑷𝑷(𝑒𝑒|𝑋𝑋)𝑷𝑷(𝑋𝑋)
𝑷𝑷(𝑒𝑒)

Prior Prob. Posterior Prob.

Add evidence



Example: Getting Married in the Desert

Marie is getting married tomorrow at an outdoor ceremony in the desert. 
In recent years, it has rained only 5 days each year. Unfortunately, the 
weatherman has predicted rain for tomorrow. When it actually rains, the 
weatherman correctly forecasts rain 90% of the time. When it doesn't 
rain, he incorrectly forecasts rain 10% of the time. What is Marie’s belief 
for the probability that it will rain on her wedding day? 

𝑃𝑃(Rain|Predict) =
𝑃𝑃(Predict|Rain)𝑃𝑃(Rain)

𝑃𝑃(Predict)

=
𝑃𝑃(Predict|Rain)𝑃𝑃(Rain)

𝑃𝑃(Predict|Rain)𝑃𝑃(Rain) + 𝑃𝑃(Predict|¬Rain)𝑃𝑃(¬Rain)

=
0.9 × 0.014

0.9 × 0.014 + 0.1 × 0.986
= 0.111 The weather forecast changes her belief from 

0.014 to 0.111. She thinks that the chance of rain 
tomorrow is now about 10 times larger!

Prior probability of rain 
𝑃𝑃(𝑥𝑥) = 5/365 = 0.014

New 
Evidence 𝑒𝑒 

Posterior Probability 
𝑃𝑃 𝑥𝑥 𝑒𝑒)?

Bayesian update: 𝑃𝑃 𝑥𝑥 𝑒𝑒) = 𝑃𝑃(𝑒𝑒|𝑥𝑥)𝑃𝑃(𝑥𝑥)
𝑃𝑃(𝑒𝑒)

Likelihood 
𝑃𝑃 𝑒𝑒 𝑥𝑥) 

The decision depends on the utility: How much 
does Marie value no rain on her wedding day vs. 
moving the venue?



Bayesian Intelligent Agents

Estimate prior 
probabilities

Estimate 
Likelihoods

Update belief using 
Bayes’ rule with new 

evidence
Decision

+Utility

Approach

Agent’s knowledge. We 
typically use frequentist 

estimates (e.g., counting) 
and store them as a model.

Predict the belief states 
given different actions 

+ 
Use utility information to 

calculate expected utilities.

Choose the action that 
maximizes the expected 

utility.

Agent function

This is a type of utility-based agent is also called a decision-theoretic agent.



Independence 
between Events



Estimate prior 
probabilities

Estimate 
Likelihoods

Update belief using 
Bayes’ rule with new 

evidence
Decision

+Utility

Approach
Issues with Making Decisions using Bayes’ Rule

Issue: The table representing the likelihoods is typically way too large! 
• For 𝑛𝑛 random variables (evidence and outcome) with a domain size of 𝑘𝑘 each, we have a 

table of size 𝑂𝑂(𝑘𝑘𝑛𝑛). This is a problem for 
• storing the table, and
• estimating the probabilities from data (we need lots of data).

Solution: 
• Decomposition of joint probability distributions using conditional independence between 

events.  
• If we can identify conditional independence, then we can break the large table into several 

much smaller tables.  



Independence Between Events
• Two events A and B are independent (A ⫫ 𝐵𝐵) if and only if  

𝑷𝑷(𝐴𝐴,𝐵𝐵)  =  𝑷𝑷(𝐴𝐴) 𝑷𝑷(𝐵𝐵)

• This is equivalent to 𝑷𝑷(𝐴𝐴 | 𝐵𝐵)  = 𝑷𝑷 𝐴𝐴,𝐵𝐵
𝑷𝑷 𝐵𝐵

=  𝑷𝑷(𝐴𝐴) and 𝑷𝑷(𝐵𝐵 | 𝐴𝐴)  =  𝑷𝑷(𝐵𝐵)
• Independence is an important simplifying assumption for modeling.

Dentist Example:

Independence 𝑷𝑷(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊)  =  𝑷𝑷(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶)𝑷𝑷(𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊) 

𝑷𝑷(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 | 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊)  =
𝑷𝑷(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊)

𝑷𝑷(𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊) = 𝑷𝑷(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) 

Weather is not 
related to the 

other variables!



Decomposition of the Joint Probability Distribution 
With Independence

• Independence: The joint probability can be 
decomposed into

𝑷𝑷 𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛1, … ,𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛 = 

𝑷𝑷 𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛1 × ⋯× 𝑷𝑷 𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛 = �
𝑖𝑖=1

𝑛𝑛

𝑷𝑷(𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛𝑖𝑖)

• The joint probability is a table with 𝟐𝟐𝒏𝒏 − 𝟏𝟏 
entries (all combinations of heads and tails).

• Independence reduces the numbers needed to 
specify the joint distribution to 𝒏𝒏 probabilities 
(one for each coin). 

• Side note: If we have identical (iid) coins, then 
we even only need 2 numbers, the probability 
of H and the number of coins.

2𝑛𝑛 − 1 entries

𝑛𝑛 entries

𝑂𝑂 2𝑛𝑛 → 𝑂𝑂(𝑛𝑛)



Conditional Independence

• Conditional independence: A and B are conditionally independent given 
C (also written as A ⫫ 𝐵𝐵 | 𝐶𝐶) if, and only if,  

𝑷𝑷(𝐴𝐴,𝐵𝐵 | 𝐶𝐶)  =  𝑷𝑷(𝐴𝐴 | 𝐶𝐶) 𝑷𝑷(𝐵𝐵 | 𝐶𝐶)

• Meaning: Once we know C, learning A gives us no extra information about B.

Dentist Example:

• If we know that the patient has a cavity, then the event that the probe catches does 
not depend on whether he/she has a toothache: 

P(Catch | Toothache, Cavity) = P(Catch | Cavity)
• Therefore, Catch is conditionally independent of Toothache given Cavity
• Note: If we don’t know about the cavity, then toothache is still a good indication 

of that that the probe will catch in a potential cavity.

Cavity
Toothache

Catch



Decomposition of the Joint Probability Distribution 
With Conditional Independence

• Conditional independence 
simplifies the chain rule:

 

𝑷𝑷(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶)  = 
𝑷𝑷(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) 𝑷𝑷(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 | 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) 𝑷𝑷(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 | 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶)  = 
𝑷𝑷(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) 𝑷𝑷(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 | 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) 𝑷𝑷(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 | 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶)

Cavity
Toothache

Catch

23 − 1 =
7 entries

1 + 2 + 2 =
5 entries

If each variable only depends on 
a small number of other 
variables:

𝑂𝑂 2𝑛𝑛 → 𝑂𝑂(𝑛𝑛)



Bayesian Networks

• In many practical applications, each variable only depends on a small 
number of other variables. 

• Conditional independence can reduce the space requirements to store the 
joint probability distribution from exponential to linear:

𝑂𝑂 2𝑛𝑛 → 𝑂𝑂 𝑛𝑛

• This means we can work efficiently with large models.

Cavity
Toothache

Catch

Bayesian networks are a graphical method to specify dependence 
between random variables. This very useful technique will be 
discussed in detail later in this course.



Bayesian Decision Making
Making Simple Decisions Under Uncertainty



Probabilistic Inference

Suppose the agent must repeatedly guess the value of 
an unobserved query variable 𝑋𝑋 given some observed 
evidence 𝐸𝐸 =  𝑒𝑒 and we assume 𝑋𝑋 probabilistically 
causes 𝐸𝐸.

Example: 

x ∈  {dog, zebra, 𝑐𝑐𝑐𝑐𝑐𝑐}, e = image features 

What is the best guess �𝑥𝑥?

Notation: We use �𝑥𝑥 for an estimate and 𝑥𝑥∗ for the 
optimal estimate.



The Optimal Decision Rule: MAP

• Assumption: The agent expresses the utility of the decision as a loss 
function, which is 0 if the value of 𝑋𝑋 is guessed correctly, and 1 
otherwise.

𝐿𝐿 𝑥𝑥, �𝑥𝑥 =  �1 if �𝑥𝑥 ≠ 𝑥𝑥, and
0 otherwise. 

• The value for 𝑋𝑋 that minimizes the expected loss is the one that has 
the greatest posterior probability given the evidence 𝑒𝑒.

    �𝑥𝑥 = 𝑥𝑥∗ = argmax𝑥𝑥  𝑃𝑃(𝑋𝑋 =  𝑥𝑥 | 𝐸𝐸 =  𝑒𝑒)

• This is called the MAP (maximum a posteriori) decision. 
Choosing the most likely 𝑥𝑥 given 𝑒𝑒 is optimal for 0-1 loss!

• The error of the Bayes decision rule is called the Bayes Error Rate. 
No classifier can do better!



MAP: Maximum A Posteriori Decision

0-1 loss means we should use the value 𝑥𝑥 that has the highest (maximum) 
posterior probability given the evidence 𝑒𝑒, i.e., the prediction that most likely leads 
to a loss of 0.

𝑥𝑥∗ = argmax𝑥𝑥 𝑃𝑃 (𝑥𝑥|𝑒𝑒) = argmax𝑥𝑥
𝑃𝑃(𝑒𝑒|𝑥𝑥)𝑃𝑃(𝑥𝑥)

𝑃𝑃(𝑒𝑒)
         = argmax𝑥𝑥 𝑃𝑃(𝑒𝑒|𝑥𝑥)𝑃𝑃(𝑥𝑥)

Prior Prob.
Posterior Prob.

Likelihood
of observing 𝑒𝑒 given class x

For comparison: the frequentist maximum 
likelihood decision ignores 𝑃𝑃(𝑥𝑥)

𝑥𝑥∗ = argmax𝑥𝑥 𝑃𝑃(𝑒𝑒|𝑥𝑥)

𝑃𝑃 𝑒𝑒  is fixed for a 
given evidence.

Estimate prior 
probabilities

Estimate 
Likelihoods

Update belief using Bayes’ 
rule with new evidence Decision

+Utility (Loss)



MAP: Example

We observe: e = stripes
What is the animal? 𝑥𝑥 ∈  {zebra, dog, cat}

𝑥𝑥∗ = argmax𝑥𝑥 𝑃𝑃 (𝑥𝑥|𝑒𝑒) = argmax𝑥𝑥
𝑃𝑃(stripes|𝑥𝑥)𝑃𝑃(𝑥𝑥)

𝑃𝑃(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)
     = argmax𝑥𝑥 𝑃𝑃(stripes|𝑥𝑥)𝑃𝑃(𝑥𝑥)

Zebra: The likelihood 𝑃𝑃(stripes | zebra) is the highest. But 
the decision also depends on the prior 𝑃𝑃 zebra , the 
chance that we see a zebra. 
Cat: The likelihood for cats having stripes may be smaller, 
but the prior probability of seeing a cat is much higher.  Cat 
may have a larger posterior probability!

Posterior Prob.

likelihood Prior Prob.



Bayes Classifier

• Suppose we have many different types of observations (evidence, 
symptoms, features) 𝐹𝐹1, … ,𝐹𝐹𝑛𝑛 that we want to use to decide on an 
underlying hypothesis 𝐻𝐻.

• The MAP decision involves estimating

ℎ∗ = argmaxh∈𝐻𝐻  𝑃𝑃(𝑓𝑓1, … , 𝑓𝑓𝑛𝑛|ℎ)𝑃𝑃(ℎ) 

• How many entries does the tables 𝑃𝑃(𝑓𝑓1, … , 𝑓𝑓𝑛𝑛|ℎ) have?

Answer: If we assume that each feature can take on 𝑘𝑘 values then 
the table has 𝐎𝐎(𝒌𝒌𝒏𝒏) entries! What if we have 1000s of features?

𝐹𝐹1,𝐹𝐹2, … ,𝐹𝐹𝑛𝑛,𝐻𝐻



Naïve Bayes Model

• We want to use the MAP decision which involves 
estimating

h∗ =  argmaxh∈𝐻𝐻 𝑃𝑃(𝑓𝑓1, … , 𝑓𝑓𝑛𝑛|ℎ)𝑃𝑃(ℎ) 

• Issue: The likelihood table size grows for 𝑛𝑛 variables 
with 𝑘𝑘 different values exponentially with O 𝑘𝑘𝑛𝑛

• The naïve Bayes model makes the simplifying 
assumption that the different features are 
conditionally independent given the hypothesis.

This reduces the needed number of probabilities to 
O(𝑘𝑘 × 𝑛𝑛):

�ℎ = argmaxh∈𝐻𝐻 𝑃𝑃(ℎ) �
𝑖𝑖=1

𝑛𝑛

𝑃𝑃(𝑓𝑓𝑖𝑖|ℎ)

• The naïve Bayes decision is not optimal.
𝐹𝐹1 𝐹𝐹2 𝐹𝐹𝑛𝑛…

𝐻𝐻

𝐹𝐹1,𝐹𝐹2, … ,𝐹𝐹𝑛𝑛,𝐻𝐻
𝑂𝑂 2𝑛𝑛

𝑂𝑂 𝑛𝑛



Example: 
Naïve Bayesian 
Spam Filter



Example: Naïve Bayes Spam Filter

To make decisions, we need to:
• Define random variables so we can estimate prior probabilities and likelihoods.

• Class: spam no spam
• Evidence: features of the message.

• Define utility/loss

Estimate prior 
probabilities

Estimate 
Likelihoods

Update belief using Bayes’ 
rule with new evidence Decision

+Utility (Loss)

Approach



Message Features: Bag of Words from 
Natural Language Processing (NLP)

• Model a document as a vector of binary random variables 𝑊𝑊1, … ,𝑊𝑊𝑛𝑛 . 
• Each random variable represents if a specific word 𝑖𝑖 is present (𝑊𝑊𝑖𝑖 = 1) or 

not (𝑊𝑊𝑖𝑖 = 0)  in the message.
• Simplifications used by bag-of-words:

• The order of the words in the message is ignored.
• How often a word is repeated is ignored.
• Uses a fixed vocabulary. Unknown words are ignored.



Naïve Bayes Spam Filter Using Words

• We model the words used in messages as depending on the type of 
message (h = spam or not spam), and we use the naïve simplifying 
assumption that words are conditionally independent given the type of 
message:

𝑃𝑃(message|h) = 𝑃𝑃(𝑤𝑤1, … ,𝑤𝑤𝑛𝑛|h) ≈  �
𝑖𝑖=1

𝑛𝑛

𝑃𝑃(𝑤𝑤𝑖𝑖|h)

• Now we can calculate the a posteriori probability after the evidence of 
the message as

𝑃𝑃(h|𝑤𝑤1, … ,𝑤𝑤𝑛𝑛) ∝ 𝑃𝑃(h)∏𝑖𝑖=1
𝑛𝑛 𝑃𝑃(𝑤𝑤𝑖𝑖|h) 

priorposterior likelihoods 
(presents and 

absence of words)

Note: It is only 
proportional since 
we do not divide 
by 𝑃𝑃(𝑤𝑤1, … ,𝑤𝑤𝑛𝑛)



Naïve Bayes Spam Filter: Decision Making

Update with words as evidence:

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =  𝑃𝑃 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �
𝑖𝑖=1

𝑛𝑛

𝑃𝑃 𝑤𝑤𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ¬𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =  𝑃𝑃 ¬𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �
𝑖𝑖=1

𝑛𝑛

𝑃𝑃 𝑤𝑤𝑖𝑖 ¬𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

MAP Decision: �ℎ = argmaxℎ 𝑃𝑃 ℎ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
Scores are proportional to the probability. That means predict spam if 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) > 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(¬𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)

Minimizes 0-1 
Loss (number of 

mistakes)

A posteriori 
probabilities  

are simplified to 
proportional 

scores that can 
be compared

Estimate prior 
probabilities

Estimate Likelihoods

Update belief using Bayes’ rule 
with new evidence Decision

+Utility (Loss)



Naïve Bayes Spam Filter: Parameter Estimation

Count in training data:

𝑃𝑃 𝐻𝐻 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
# 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + 1

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 # 𝑜𝑜𝑜𝑜 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + # 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑃𝑃 𝑤𝑤𝑖𝑖 = 1 | 𝐻𝐻 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
# 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡𝑡𝑡𝑡 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 + 1

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 # 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + # 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

Smoothing for 
low counts.

Prior 𝑷𝑷(𝐻𝐻)

spam:  0.33

¬spam:  0.67 

𝑃𝑃(𝑊𝑊𝑖𝑖  =  1 | 𝐻𝐻 =  ¬𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)𝑃𝑃(𝑊𝑊𝑖𝑖  =  1 | 𝐻𝐻 =  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)

+ likelihoods for the absence of words:
𝑃𝑃 𝑊𝑊𝑖𝑖  =  0 𝐻𝐻 =  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)  =  1 −  𝑃𝑃 𝑊𝑊𝑖𝑖  =  1 𝐻𝐻 =  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)

𝑃𝑃 𝑊𝑊𝑖𝑖  =  0 𝐻𝐻 =  ¬𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)  =  1 −  𝑃𝑃 𝑊𝑊𝑖𝑖  =  1 𝐻𝐻 =  ¬𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) 

𝑂𝑂 𝑛𝑛

Estimate prior 
probabilities

Estimate Likelihoods

Update belief using Bayes’ rule 
with new evidence Decision

+Utility (Loss)



Summary

•  This is a type of utility-based agent, also known as a decision-theoretic agent.
• It combines:

1. Probability theory to update its belief about outcomes given actions.
2. Utility theory to represent preference for different outcomes.

• Bayes’ Theorem provides a general framework for learning functions and decision rules 
from data is the goal of Machine Learning.

• An issue is that we need to estimate/learn a model consisting of an exponentially large set 
of all likelihoods. This is essentially the complete joint probability distribution between the 
evidence and state random variables! 

•  Much of AI and ML is about overcoming this model size issue by using simplifications, such 
as the naïve Bayes model.

Estimate prior 
probabilities

Estimate 
Likelihoods

Update belief using 
Bayes’ rule with new 

evidence
Decision

+Utility

Bayesian Intelligent Agent



Appendix: A 
Quick Review 
of Probability 

Theory
Random variables

Events

Joint probabilities

Marginal probabilities

Conditional probabilities



Random Variables

• We describe the (uncertain) state of the world using random variables.
• Random variables are denoted by capital letters.

• R: Is it raining?
• W: What’s the weather?
• Die: What is the outcome of rolling two dice?
• V: What is the speed of my car (in MPH)?

Random Variable

• Random variables take on values in a domain D.
• Domain values must be mutually exclusive and exhaustive.

• R ∈ {True, False}
• W ∈ {Sunny, Cloudy, Rainy, Snow}
• Die ∈ {(1,1), (1,2), … (6,6)}
• V ∈ [0, 200]

Domain



Events and Propositions

Probabilistic statements are defined over 
events, world states or sets of states
• “It is raining”
• “The weather is either cloudy or 

snowy”
• “The sum of the two dice rolls is 11”
• “My car is going between 30 and 50 

miles per hour”

Events are described using 
propositions:
• R = True
• W = “Cloudy” ∨ W = 

“Snowy”
• D ∈ {(5,6), (6,5)}
• 30 ≤ S ≤ 50



Probabilities

Probabilities are numbers indicating how likely we think an event (a realization of a 
random variable) is. These numbers can be

• Estimated as long-term averages (frequentist approach)
• Indicate a subjective belief (Bayesian approach) 

Kolmogorov’s 3 axioms are sufficient to define probability theory:
1. Probabilities are non-negative real numbers.
2. The probability that at least one atomic event happens is 1 (nothing happens is an event!).
3. The probability of mutually exclusive events is additive.

The axioms lead to important properties op probabilities (𝐴𝐴 and 𝐵𝐵 are sets of events):
• Numeric bound: 0 ≤ 𝑃𝑃 𝐴𝐴 ≤ 1
• Monotonicity: if 𝐴𝐴 ⊆ 𝐵𝐵 then 𝑃𝑃 𝐴𝐴 ≤ 𝑃𝑃 𝐵𝐵
• Addition law: 𝑃𝑃 𝐴𝐴 ∪ 𝐵𝐵 = 𝑃𝑃 𝐴𝐴 + 𝑃𝑃 𝐵𝐵 − 𝑃𝑃(𝐴𝐴 ∩ 𝐵𝐵)
• Probability of the empty set: 𝑃𝑃 ∅ = 0
• Complement rule: 𝑃𝑃 ¬𝐴𝐴 = 1 − 𝑃𝑃 𝐴𝐴

• Continuous variables need in addition the definition of density functions.



Joint Probability Distributions: Atomic Events

• Atomic event: a complete assignment of values to all random variables.
• For AI: Random variables are the fluents of a factored state description. An 

atomic event is a complete specification of the state of the world.

• Atomic events are mutually exclusive and exhaustive.

• Example: if the state consists of only two Boolean variables Cavity and 
Toothache, then there are 4 distinct atomic events:
  Cavity = false ∧Toothache = false
  Cavity = false ∧ Toothache = true
  Cavity = true ∧ Toothache = false
  Cavity = true ∧ Toothache = true



Joint Probability Distributions
A joint distribution is an assignment of probabilities to every possible 
atomic event (state). The distribution is often stored as a table.
Example: Joint probability distribution for a world with two random 
variables

Atomic event P

Cavity = false ∧Toothache = false 0.8

Cavity = false ∧ Toothache = true 0.1

Cavity = true ∧ Toothache = false 0.05

Cavity = true ∧ Toothache = true 0.05

Sum: 1.00

Cavity Toothache P

False false 0.8

False True 0.1

True false 0.05

True true 0.05

or

Notation:
• 𝑃𝑃(𝑋𝑋 =  𝑥𝑥) or 𝑃𝑃𝑋𝑋(𝑥𝑥) or 𝑃𝑃(𝑥𝑥) for short, is the probability of the event 

that random variable 𝑋𝑋 has taken on the value 𝑥𝑥.
• 𝑷𝑷(𝑋𝑋) is the distribution of probabilities for all possible values of X. 

Often we are lazy or forget to make P bold.



Marginal Probability Distributions

Sometimes we are only interested in one variable (part of the state). This 
is called the marginal distribution 𝑷𝑷(𝑌𝑌)

Cavity, Toothache P

Cavity = false ∧Toothache = false 0.8

Cavity = false ∧ Toothache = true 0.1

Cavity = true ∧ Toothache = false 0.05

Cavity = true ∧ Toothache = true 0.05

M
ar

gi
na

l 
Pr

ob
. D

ist
r. Cavity P

Cavity = false ?
Cavity = true ?

Toothache P

Toothache = false ?
Toothache = true ?
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Marginal Probability Distributions 2

Suppose we have the joint distribution 𝑷𝑷(𝑋𝑋,𝑌𝑌) and we want to find 
the marginal distribution 𝑷𝑷(𝑋𝑋)

𝑃𝑃(𝑋𝑋 = 𝑥𝑥) = 𝑃𝑃 (𝑋𝑋 = 𝑥𝑥 ∧ 𝑌𝑌 = 𝑦𝑦1) ∨ ⋯∨ (𝑋𝑋 = 𝑥𝑥 ∧ 𝑌𝑌 = 𝑦𝑦𝑛𝑛)

= 𝑃𝑃 (𝑥𝑥,𝑦𝑦1) ∨ ⋯∨ (𝑥𝑥,𝑦𝑦𝑛𝑛) = �
𝑖𝑖=1

𝑛𝑛

𝑃𝑃(𝑥𝑥,𝑦𝑦𝑖𝑖)

Rule: to find 𝑃𝑃(𝑋𝑋 =  𝑥𝑥), sum the probabilities of all atomic events 
where 𝑋𝑋 =  𝑥𝑥. 
This is called “summing out” or “marginalizing out” the other 
variables.



Marginal Probability Distributions 3

Suppose we have the joint distribution 𝑷𝑷(𝑋𝑋,𝑌𝑌) and we want to find the 
marginal distribution 𝑷𝑷 𝑌𝑌 . 

Cavity, Toothache P

Cavity = false ∧Toothache = false 0.8

Cavity = false ∧ Toothache = true 0.1

Cavity = true ∧ Toothache = false 0.05

Cavity = true ∧ Toothache = true 0.05

M
ar

gi
na

l 
Pr

ob
. D

ist
r. Cavity P

Cavity = false 0.8 + 0.1 = 0.9

Cavity = true 0.05 + 0.05=0.1

Toothache P

Toothache = false 0.8 + 0.5= 0.85

Toothache = true 0.1 + 0.05= 0.15
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ro
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r.



Conditional Probability
• Probability of event cavity given toothache: 

 P(Cavity = true | Toothache = true) = P(Cavity = true ∧ Toothache = true)
P(Toothache = true) 

• Conditional distribution of random variable A given B

 𝑷𝑷 𝐴𝐴 𝐵𝐵) = 𝑷𝑷(𝐴𝐴, 𝐵𝐵)
𝑷𝑷(𝐵𝐵)

 

𝑷𝑷(𝐴𝐴) 𝑷𝑷(𝐵𝐵)

𝑷𝑷(𝐴𝐴,𝐵𝐵)

𝑷𝑷(𝐴𝐴, 𝐵𝐵)
𝑷𝑷(𝐵𝐵)

… fraction of B that 

is shared with A



Conditional Probability 2
Jo

in
t P

ro
b.

 D
ist

r.
M

ar
gi

na
l 

Pr
ob

. D
ist

r. Cavity P

Cavity = false 0.9

Cavity = true 0.1

Toothache P

Toothache = false 0.85

Toothache = true 0.15

𝑷𝑷 𝐴𝐴 𝐵𝐵) =
𝑷𝑷(𝐴𝐴,𝐵𝐵)
𝑷𝑷(𝐵𝐵)

What is P(Cavity = true | Toothache = false)?
𝑃𝑃 Cavity = true ∧  Toothache = false

𝑃𝑃 Toothache = false = 0.05 / 0.85 =  0.059

What is P(Cavity = false | Toothache = true)?
𝑃𝑃 Cavity = false ∧  Toothache = true

𝑃𝑃 Toothache = true =  0.1 / 0.15 =  0.667

Cavity, Toothache P

Cavity = false ∧Toothache = false 0.8

Cavity = false ∧ Toothache = true 0.1

Cavity = true ∧ Toothache = false 0.05

Cavity = true ∧ Toothache = true 0.05



Conditional Distributions

A conditional distribution is a distribution over the values of one variable 
given fixed values of other variables.
Examples:

Cavity | Toothache = true P

Cavity = false | Toothache = true 0.667

Cavity = true | Toothache = true 0.333

Cavity | Toothache = false P

Cavity = false | Toothache = false 0.941

Cavity = true  | Toothache = false 0.059

Toothache | Cavity = true P

Toothache= false | Cavity = true 0.5

Toothache = true  | Cavity = true 0.5

Toothache | Cavity = false P

Toothache= false | Cavity = false 0.889

Toothache = true  | Cavity = false 0.111

𝑷𝑷 𝐴𝐴 𝐵𝐵) =
𝑷𝑷(𝐴𝐴,𝐵𝐵)
𝑷𝑷(𝐵𝐵)

Cavity, Toothache P

Cavity = false ∧Toothache = false 0.8

Cavity = false ∧ Toothache = true 0.1

Cavity = true ∧ Toothache = false 0.05

Cavity = true ∧ Toothache = true 0.05Jo
in

t P
ro

b.
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ist
r.

Co
nd

iti
on

al
 P

ro
b.

 D
ist

r.



Normalization Trick
To get the whole conditional distribution 𝑷𝑷(𝑋𝑋 | 𝑌𝑌 =  𝑦𝑦) at once, select all entries in the 
joint distribution matching 𝑌𝑌 =  𝑦𝑦 and renormalize them to sum to one.
Example: Calculate P(Toothache | Cavity = false) from the joint probability distribution:

Cavity, Toothache P

Cavity = false ∧Toothache = false 0.8

Cavity = false ∧ Toothache = true 0.1

Cavity = true ∧ Toothache = false 0.05

Cavity = true ∧ Toothache = true 0.05

Toothache, Cavity = false P

Toothache= false ∧ Cavity = false 0.8

Toothache = true ∧ Cavity = false 0.1

Toothache | Cavity = false P

Toothache= false | Cavity = false 0.889

Toothache = true  | Cavity = false 0.111

Select 𝑃𝑃(𝑋𝑋,𝑌𝑌 =  𝑦𝑦)

Renormalize sum to 1 (= divide by 𝑃𝑃(𝑌𝑌 = 𝑦𝑦))

Equivalent to 
𝑷𝑷 𝑋𝑋 𝑌𝑌 = 𝑦𝑦)  =  𝛼𝛼 𝑷𝑷(𝑋𝑋,𝑌𝑌 = 𝑦𝑦) 
 with 𝛼𝛼 = 1/𝑃𝑃(𝑌𝑌 = 𝑦𝑦)

Sum is the marginal 𝑃𝑃 𝑌𝑌 = 𝑦𝑦 = 0.9
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Conditional Independence and 
the Bayes’ Theorem
• These important concepts are introduced earlier in this module. 



Conclusion

• Probability theory has many applications to deal with uncertainty in AI. 
Here are some examples:

• Joint probability distribution over the state space: The basis of 
reasoning about how likely it is to be in a state.

• Conditional independence makes it possible to work with more 
complicated factored state representations (a larger number of fluents).

• Marginal distributions to reason about the most likely value of a fluent.
• Conditional distributions: Transition probability given a chosen action.
• Bayesian updates: Learn (= update the belief) about the current state.
• Machine learning is based on decision theory, Bayesian decision making, 

and Bayesian updates for learning.
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