Naive Bayes

CS 5/7320
Artificial Intelligence

4.0-
Species

Learning from Examples:

® setosa

Supervised Machine Learning 5" oy
Ei - prediction

AIMA Chapter 19 ’ I:::Z""

Slides by Michael Hahsler

Some slides are based on Dan Klein’s slides 2.0~

(http://ai.berkeley.edu); with figures from the AIMA textbook. 5 : ; 5
Sepal.Length

®
!
i
i

Hat
e

L

rll,lq"s""
]
@ @ (0 This work is licensed under a Creative Commons @ﬂ.}:i &l:-:":'.un:':a
BY SA Attribution-ShareAlike 4.0 International License. Online Material

http://ai.berkeley.edu/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Topics

Agents & Supervised Training Training & Types of

ML Learning Data Testing

supervised Use in Al
ML Models

Agents and ML

DeepAi.org with prompt: “A happy cartoon robot with an artificial neural
network for a brain on white background learning to play chess”

Learning from Examples

Up until now in this course:

» Hand-craft algorithms to make rational/optimal or at least good
decisions.
Examples: Search strategies, heuristics, and constructing Bayesian
networks.

Issues
* We may not be able to anticipate all possible future scenarios.

* We may have examples, but we do not know how to implement a
solution.

Algorithm m
chooses actions (behavior)

Data

Supervised Machine Learning
* Uses observations: training data with the correct answers.

* Learn a function (model) to map an input (e.g., state) to an output
(e.g., action) representing the desired behavior.

* Examples:

= Use a naive Bayesian classifier to distinguish between spam/non-spam.

= Learn a playout policy to simulate games (current board -> good move)

Data

(observations)

o § Model
chooses actions

Learning Components of an Agent

* We can learn many different components of an agent from examples
 Example: Learning components of a model-based reflex agent

Learn a utility
function

Learn the state
representation

Learn the e /—\
transition \ J,p
o What th 1d
— d - I / isalikeen‘;&r
s"=T(s,a e2
(What my actions do S
=
o
=
5
a=f(ps) 3
/(Condition-action rule s)—» ;}?g:ﬁtdagg?lg;
va
@gent Actuators J =

Supervised
Learning

Teaching a model to answer correctly

Supervised Learning As Function Approximation

Examples

* We assume there exists an unknown target function y = g'(x) that produces iid
(independent and identically distributed? examples, possibly with noise and errors.

* Examples are observed input-output pairs E = (x1,y1), ..., (X;, Vi), .., (XN, YN),
where x; is a vectors called the feature vector.

Learning problem °f
 Given a hypothesis space H of representable models.
* Find a hypothesis h € H suchthat y; = h(x;) = y; Vi
* That is, we want to approximate f by h using E.

Supervised learning includes
 Classification: y is a class labels. E.g., x are percepts and y is the chosen action.
* Regression: vy is a real number. E.g., x are state features and y is the state utility.

Consistency vs. Simplicity

Example: Univariate curve fitting (regression, function approximation)

Learned Models

40 40
[] _
Examples f (x) 5 h(x)=mean(y)=11.2 s h(x)=x"2

25 25

. > 20 > 20

35 ° e o -

30 " . .

25 . . :

> 20 0 ° ° . o

15 e 1 2 3 4 5 6 1 2 3 4 5

10 ®))

5 °

0 e e

0 2 4 6 8 40 \ 40 "h(x) = 1x5 - 16x* + 95x3 -
35 35
' % " 324x - 144
h(x) = 4.9429x - 6.1333
25 25
20 20
15 ® 15
10 10
5 5
0 ° ° 0
Consistency: h(x;) = y; (minimize the error) 5 0 2 - 6 8 50

Simplicity: small number of model parameters.

Measuring Consistency using Loss

Goal of learning: Find a hypothesis that makes predictions that are consistent with
the examples E = (x1; 3’1); e (xi; yi)) Xy (xNi YN)

That is, y=h(x) =y.

Measure mistakes: Loss function L(y,y) = L(f(x), h(x))

* Absolute-value loss L{(y,9) = |y — V|

e Squared-error loss L,(y,9) = (y —)? } For Regression
* 0/1loss Loy1(7,9) =0ify = J,else 1 <« For Classification
* Cross-entropy loss and many others...

Learning Consistent Approximations

* Empirical loss 1
EmpLoss; g(h) = — 2 L(y,h(x))
£,
x,y)EE

* Find the best hypothesis that minimizes the loss
h* = argmin EmpLoss; g (h)
he H

* Reasons for h™ # f
a) Realizability: f € H
b) f is nondeterministic.

c) Itis computationally intractable to search all of H,
so we use a non-optimal heuristic like local search.

The Most Consistent Classifier

For 0/1 loss, the empirical loss is minimized by the model that predicts for each x the most likely class y using
MAP (Maximum a posteriori) estimates. This is called the Bayes classifier.

h*(x) = argmax P(Y = y | X = x) = argmax P 1y) PG) = argmax P(x | y) P(y)
y y P(x) y

Optimality: The Bayes classifier is optimal for 0/1 loss. It is the most consistent classifier possible with the lowest
possible error called the Bayes error rate. No better classifier exists for 0/1 loss!

Issue: The classifier requires to learn P(x | y) P(y) = P(x,y) from the examples.

* It needs the complete joint probability which requires in the general case a probability table with one entry for
each possible feature combination in vector x.

* This is impractical (unless a simple Bayesian network exists).
Most classifiers try to approximate the Bayes classifier using a simpler model with fewer parameters.

Simplicity
Ease of use

 Simpler hypotheses have fewer model parameters to estimate and store. Also makes
prediction faster.

Generalization: How well does the hypothesis perform on new data?

* We do not want the model to be too specific to the training examples (an issue called
overfitting).

* Simpler models typically generalize better to new examples.

How to achieve simplicity?

a) Model bias: Restrict H to simpler models (e.g., assumptions like independence, or only
consider linear models).

b) Feature selection: use fewer variables from the feature vector x.
c) Regularization: directly penalize the model for its complexity (e.g., number of parameters)

h* = argmin [EmpLossL,E (h+AC omplexity(h)]
he H \ J

Y
Penalty term

Dataset 1

Data set 2

Model Selection: Bias vs. Variance

mﬂ_

Linear

Sinusoidal

Piecewise linear

Degree-12 polynomial

Jff

‘fff‘f

Bias: restrictions by the model class

Low Variance: difference in the model due to slightly different data. high

Points: Two
samples from the
same generating
function f.

Lines: the learned
model function h*.

This is a tradeoff
The right choice

depends on the

application.

Training Data ‘: .

Feature vector x

Class

T h e D a ta S et (Features, Variables, Attributes)

Label y

l l

Input Attributes Output
Example
Alt Bar Fri Hun Pat Price Rain Res Type Est WillWait
X1 Yes No No Yes Some $$%% No Yes French 0-10 y1 = Yes
Examples X2 Yes No No Yes Full $ No No Thai 30-60 y2 = No
(Instances, X3 No Yes No No Some $ No No Burger 0-10 ys3 = Yes
. X4 Yes No Yes Yes Full $ Yes No Thai [0-30 y4 = Yes
Observation) X5 Yes No Yes No Full $3% No Yes French =60 ys = No
Xg No Yes No Yes Some $3 Yes Yes [ITtalian 0-10 yg = Yes
X~ No Yes No No None $ Yes No Burger 0-10 y; =No
Xy No No No Yes Some 5% Yes Yes Thai 0-10 yg = Yes
Xg No Yes Yes No Full $ Yes No Burger =6(0) 1o = No
X10 Yes Yes Yes Yes Full $88 Ne Yes Italian 10-30 y10 = No
X11 No No No No None $ No No Thai 0-10 y11 = No
X192 Yes Yes Yes Yes Full $ No No Burger 30-60 119 = Yes
R\ o)
& NP & N
X Q/‘o s’b
v Q8

III

Task: Find a hypothesis (called “model”) to predict the class given the features.

O Made of Metal

C 100 000 -mile
Jrvectrain vty

Feature Engineering

Add more information sources as new variables to the model.
Add derived features that help the classifier (e.g., x; x5, x2,In(x;)).

Embedding: E.g., convert words to vectors where vector similarity
between vectors reflects semantic similarity.

Feature Selection: Which features should be used in the model is a model
selection problem (choose between models with different features).

(Deep) neural networks can perform “automatic” feature engineering
called end-to-end machine learning.

Example for Spam detection: In addition to words, add features for:
* Have you emailed the sender before?
* Have 1,000+ other people received the same email?
* Isthe email in ALL CAPS?

Training Data in Al

* Training Data in Al can come from many sources

 Existing Data: Download documents from the
internet to train Large Language Models.

* Observation: Record video of a task being
performed (e.g., for self-driving cars).

e Simulation: E.g., simulated games using a
playout strategy.

* Expert feedback on how well a task was
performed.

Il Training
and

Testing

Training a Model

Hold a test set back to estimate the generalization error (often 20%).
Hold a validation data set back from the training data (often 20%).

Learn different models using the training set with different hyperparameters (learning
rate, regularization A, maximal decision tree depth, selected features,...). Often, a grid
of possible hyperparameter combinations or some greedy search is used.

Evaluate the models using the validation data and choose the model with the best
accuracy. Selecting the right type of model, hyperparameters, and features is called
model selection/hyper parameter tuning.

Learn the final model with the chosen hyperparameters using all training (including

validation data).

Notes:

* The validation set was not used for training with different hyperparameters, so we get an estimate of

the generalization error for comparing different hyperparameter settings.

If no model selection is necessary, then no validation set is used.

Training
Data

Validation
Data

Testing: Evaluating the Final Model

The final model was trained on the training examples E. We want to test how well the

model will perform on new examples T (i.e., how well it generalizes to new data). We
use the held-back test data.

* Testing loss: Calculate the empirical loss for predictions on a testing data set T that
is different from the data used for training.

Training

1 Data
EmpLoss,r(h) = T > Lo k) i

(x,y)ET

* For classification we often use the accuracy measure, the proportion of correctly
classified test examples.

1
accuracy(h,T) = | z [h(x) =y]=1-— EmpLossLO/l,T(h)
(x,y)ET

[c] is an indicator function returning 1 if c = True and otherwise 0

Learning Curve:
The Effect the Training Data Size

Accuracy
Proportion correct on test set

0.9 -

0.8 -

0.7 1

0.6 1

0.5 1

0.4

No classifier can get
consistently better than
the Bayesian error rate

20

40 60
Training set size

30

100

Accuracy increases when the
amount of available training
data increases.

More data is better!

At some point, the learning
curve flattens out, and more
data does not contribute
much!

Comparing to a Baselines

* First step: get a baseline
* The baseline is often a simple model.
* Helps to determine how hard the task is.
* Helps determine what a good accuracy is.

* Weak baseline: E.g., the most frequent label classifier
* Gives all test instances the same label which is the most common label in the training set.
* Example: For spam filtering, give every message the label “ham” since most messages are ham.

* Accuracy might be very high if the problem is skewed (called class imbalance).

* Example: If calling everything “ham” gets already 66% right, then a classifier that gets 68% isn’t a big
improvement!

» Strong baseline: For research, we typically compare our model with the
performance of previously published state-of-the-art methods.

Types of
Supervised
ML Models

Regression: Predict a number

Classification: Predict a label

Regression: Linear Regression

* Model: hw(x]) =Ww, + Wlxj,l + -+ an]',n — Zi Wix]',i — WTx]'
. . . . _ . 2

Empirical loss: L(w) = ||Xw — y/| Squared error loss over the whole data matrix X
* Gradient: VL(w) = 2XT(Xw —y)

* Minimum loss: VL(w) =0 The gradient is a vector of partial derivatives

T

VLW) = | (W), e (W), s e (W)
w) = |[— w), — (W), ..., — (W
 Solution: Gradient descent ow, aw, owy,

we«w—aVL(w)

1000 1 P
: : H 900 >0 "// ? Loss

* Alternative: Analytical solution S . . 7o

@ | e
2XT(Xw —y) = 0 (solve for w) & 700 4 ®8.~
Q %0 %
2 600 A GPGB@ o
w' = (2 g 500 %’g-f 8
— = 400 -,.g,
Pseudo inverse 300 26

500 1000 1500 2000 2500 3000 3500

House size in square feet Convex loss function

(a) (b)

Bayes Classifier

h*(x) = argmax P(Y =y | X = x)

Naive Bayes Classifier 2

* Approximates a Bayes classifier with the naive independence assumption that all n
features are conditional independent given the class.

h — P P i
() = argmax P(y) 1_1[(x; 1 9)

The priors P(y)s and the likelihoods P(x; | y)s are estimated from the data by
(smoothed) counting.

e Gaussian Naive Bayes Classifiers extend the approach to continuous features by
modeling the feature likelihood for each class y as a Gaussian probability density:

P(x;|y)~ N(.uy: Uy)

The parameters for the normal distribution N(uy, O'y) are estimated from data.

Bayes Classifier

h*(x) = argmax P(Y =y | X = x)

Decision Trees y

| Patrons? |

None Some Full
Example Input Attributes Output | WaitEstimate? |

Alt Bar Fri Hun Pat Price Rain Res Type Est WillWait)
X1 Yes: No No Yes Some $8% No Yes French 0-10 1y = Yes
Xo Yes. No No Yes Full $ No No Thai 30-60 y2 = No Altemate?
X3 No Yes No No Some $ No No Burger 0-10 y3 =Yes
Xy Yes No Yes Yes Full $ Yes No Thai 10-30 yy = Yes
X5 Yes No Yes No Full $3% No Yes French =60 ys = No - -
Xg No Yes No Yes Some 3% Yes Yes [ltalian 0-10 yg = Yes | Reservation? ” Fri/Sat? | Altemate?
X7 No Yes No No None $ Yes No Burger 0-10 y;=Neo Yes
Xg No No No Yes Some 3% Yes Yes Thai 0-10 yg = Yes
Xo No Yes Yes No Full $ Yes No Burger =60 ya = No
X10 Yes Yes Yes VYes Full $3% No Yes lalian 10-30 10 = No
X1 No No No No None $ No No Thai 0-10 411 = No
Xio Yes Yes Yes Yes Full $ No No Burger 30-60 110 = Yes

* Asequence of decisions represented as a tree.

Class labels for leaf nodes are

 Many implementations are available that differ b T e ey et
y jority

* How to select features to split? training data ending up in the

* When to stop splitting? leaf node. The probability can

be estimated as:
P(Yes|node N) = NN¢

vestNNo

* Is the tree pruned?

* Approximates a Bayesian classifier by

h(x) = argmax P(Y = y | leafNodeMatching(x))
y

Bayes Classifier

h*(x) = argmax P(Y =y | X = x)

K-Nearest Neighbors Classifier

7.5 7.5
7 A o .~ 7 -
6.5 | 800 °© ~ 65 1 800 ° -~
6 1 ® 8.0 8 &~ 6 1 0 o8 <~
55 . 8 %0f 970] 8 ge@)
00 " oo ‘_? 5.5 0® ‘9,9
1 5 o ia i -
BTN L o0g /{:;;!) 42 19 o 2 E’{".'
] : = 1 I
4 ° e;/g.'- ° : 47 ® 9 -"";‘ Je o..
3.5 1 /./ e ® ® 3.5 1 ~ e °
34 3 //’
25 Ao 25 dep
4.5 5 2.3 6 0.5 7 4.5 5 3.5 6 0.5 7
X X
(k=1) (k=5)

* Class is predicted by looking at the majority in the set of the k nearest neighbors. k is a
hyperparameter. Larger k smooths the decision boundary.

* Neighbors are found using a distance measure (e.g., Euclidean distance between points).
* Approximates a Bayesian classifier by

h(x) = argmax P(Y = y | neighborhood(x))
y

Most Used in Al: Artificial Neural Networks R

are collected in a matrix.

Network Topology

Hidden Layer

X1

Computational graph

For classification, a
w3 softmax activation
function returning

a P(y|x) is used.

11’],3 11‘315
o + 23

11"2,3

X wo s

+ 1= % + J={(g5)p=V

*

Wi4

Non-linear activation function

Represent
$ = h(x) = g1 (W[Z] g(wit] x))
as a network of weighted sums with

non-linear activation functions g(-)
(e.g., sigmoid, ReLU).

Learn weight matrices W from
examples using gradient descent with
backpropagation of prediction errors

L@.y).

ANNs are universal approximators.
Large networks can approximate any
function (has no bias). Regularization
is typically needed to avoid overfitting.

End-to-end learning: The hidden layer
performs “automatic feature
engineering

Deep learning adds more hidden layers
and layer types (e.g., convolution
layers) for more efficient learning and
transfer learning.

Typical Use of Supervised ML for Intelligent Agents

Learn a Polic Learn Evaluation Learn Perception Compressing Tables
y Functions and Actuation P &

e Classification: Directly ® Regression: Learn * Natural language e Neural networks can be

learn the best action for
each state from
examples.

a = h(state features)

This model can also be
used as a playout policy
for Monte Carlo tree
search with data from
self-play.

evaluation functions to
estimate state utilities.

eval = h(state features)

Can learn a heuristic for
heuristic alpha-beta
search.

For reinforcement
learning we can learn

action values
q(state, action).

processing: Use deep
learning / word
embeddings / language
models to understand
concepts, translate
between languages, or
generate text.

Speech recognition:
Identify the most likely
sequence of words.

Vision: Object recognition
in images/videos. Generate
images/video.

Robotics: Learn how to
move safely.

used as a compact

representation of tables

that do not fit in

memory. E.g.,

e Joint and conditional
probability tables

e State utility tables

(i.e., an evaluation
function)

e Q-Value tables in
reinforcement
learning

Bottom line: Learning a function is often more effective than hard-coding it.
However, we do not always know how it performs for rare and edge cases!

	CS 5/7320 �Artificial Intelligence��Learning from Examples:�Supervised Machine Learning��AIMA Chapter 19��Slides by Michael Hahsler ��Some slides are based on Dan Klein’s slides (http://ai.berkeley.edu); with figures from the AIMA textbook.
	Topics
	Agents and ML
	Learning from Examples
	Learning Components of an Agent
	Supervised Learning
	Supervised Learning As Function Approximation
	Consistency vs. Simplicity
	Measuring Consistency using Loss
	Learning Consistent Approximations
	The Most Consistent Classifier
	Simplicity
	Model Selection: Bias vs. Variance
	Training Data
	The Dataset
	Feature Engineering
	Training Data in AI
	Training �and �Testing
	Training a Model
	Testing: Evaluating the Final Model
	Learning Curve: �The Effect the Training Data Size
	Comparing to a Baselines
	Types of �Supervised�ML Models
	Regression: Linear Regression
	Naïve Bayes Classifier
	Decision Trees
	K-Nearest Neighbors Classifier
	Most Used in AI: Artificial Neural Networks
	Typical Use of Supervised ML for Intelligent Agents

