

CS 5/7320

Artificial Intelligence

Reinforcement Learning

AIMA Chapter 17+22

Slides by Michael Hahsler
with figures from the AIMA textbook.

This work is licensed under a [Creative Commons](#)
Attribution-ShareAlike 4.0 International License.

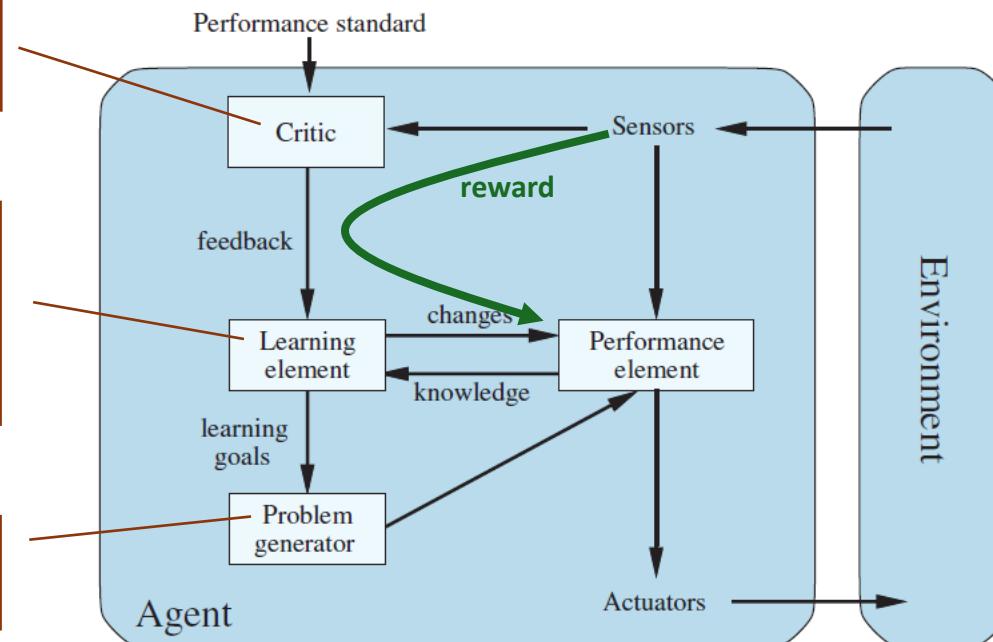
Online Material

From Chapter 2: Agents That Learn

Critic: How is the agent currently performing?

Learning Element: Improves the performance element and changes how it selects actions.
E.g., adding rules, changing weights

Problem generators: Explore new actions.



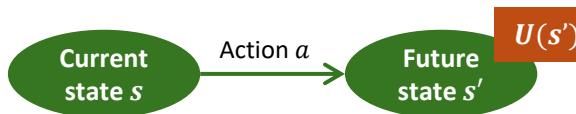
Positive feedback from the critic, called “reward,” reinforces the performance element.

Reinforcement Learning: How do we learn a good performance element from rewards using trial-and-error?

Making Complex Decisions: Sequential Decision Making

AIMA Chapter 17

Remember Chapter 16: Making Simple Decisions



For a decision that we make frequently and making it once does not affect the future decisions (**episodic environment**), we can use the **Principle of Maximum Expected Utility (MEU)**.

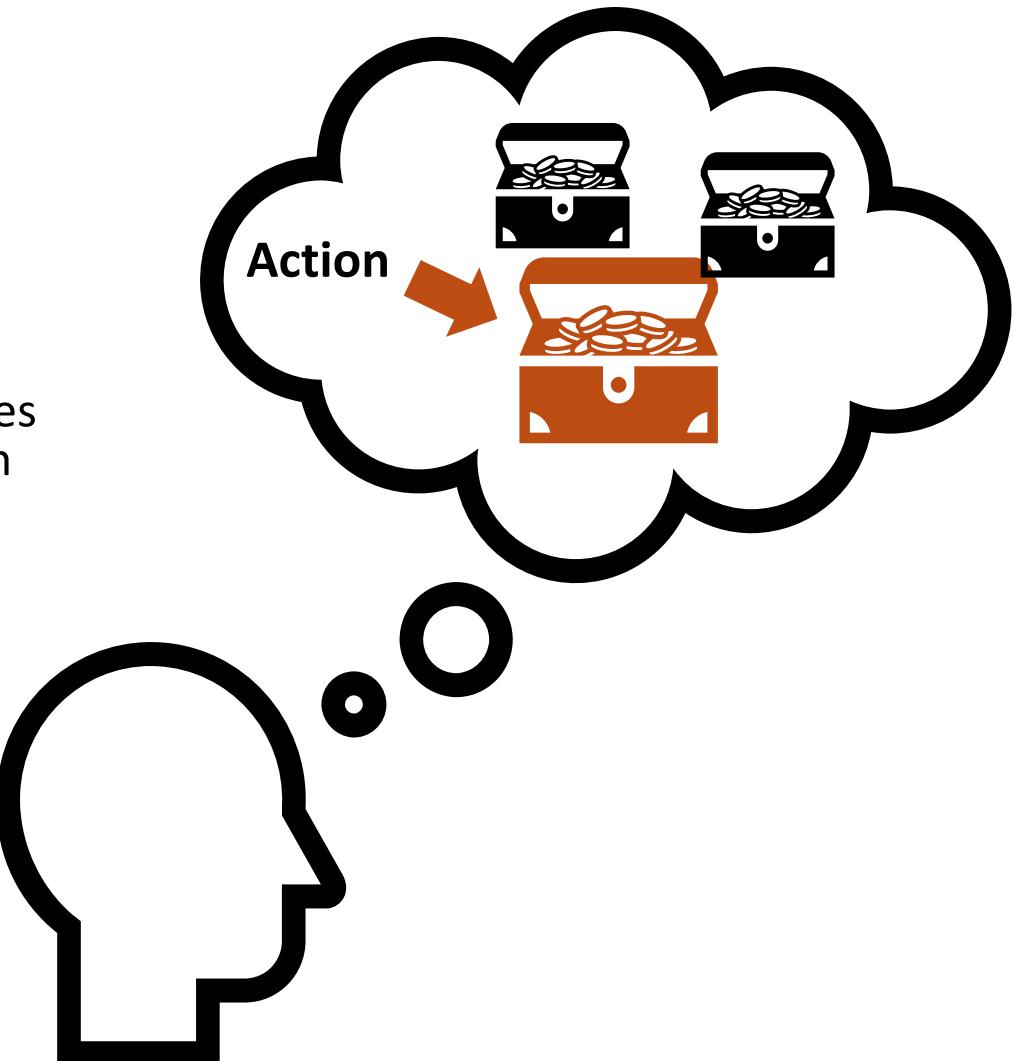
Given the expected utility of an action

$$EU(a) = \sum_{s'} \sum_s P(s) P(s'|s, a) U(s')$$

choose action that maximizes the expected utility:

$$a^* = \operatorname{argmax}_a EU(a)$$

Now we will talk about **sequential decision making**.

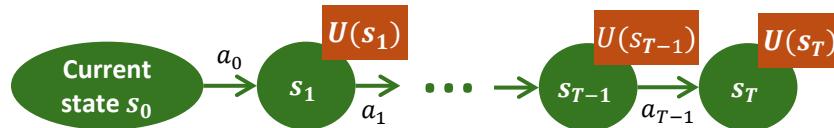


$P(s)$... Uncertainty about current state (= partial observability)

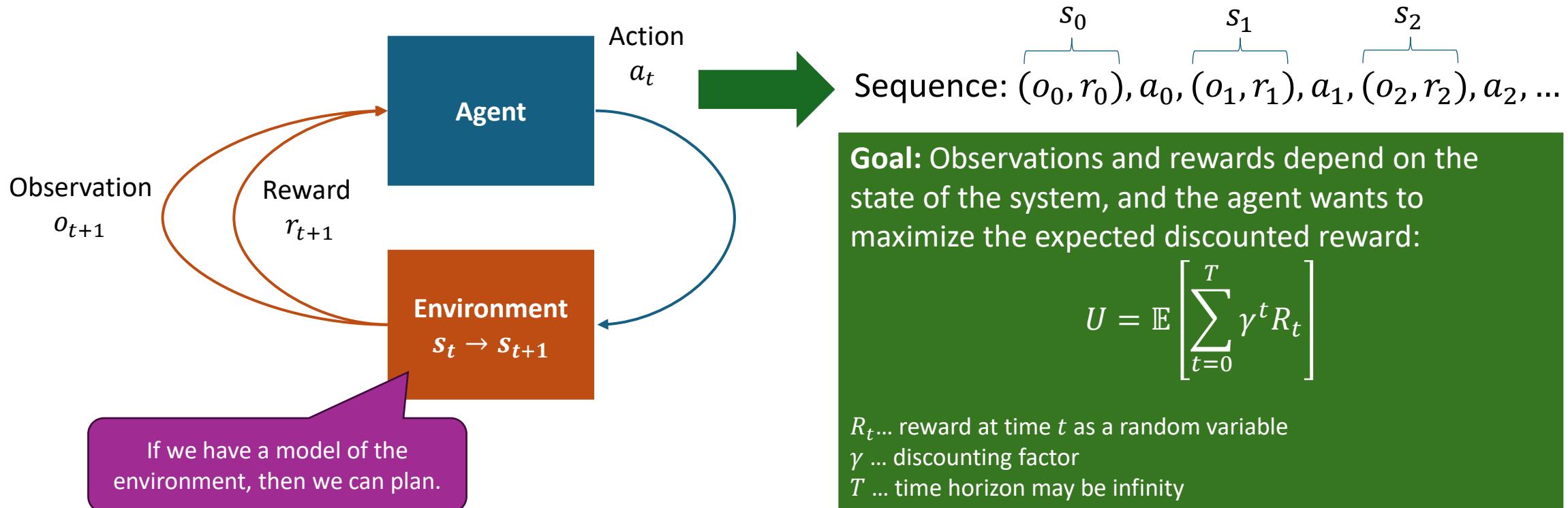
$P(s'|s, a)$... Stochastic transition function (= non deterministic actions).

$U(s')$... cardinal utility function.

Sequential Decision Problems



- **Utility-based agent:** The agent's utility depends on a sequence of decisions that depend on each other.
- Sequential decision problems incorporate utility (called immediate and long-term reward), uncertainty, and sensing.



An Environment Model: Markov Decision Process (MDP)

MDPs are discrete-time stochastic control processes defined by:

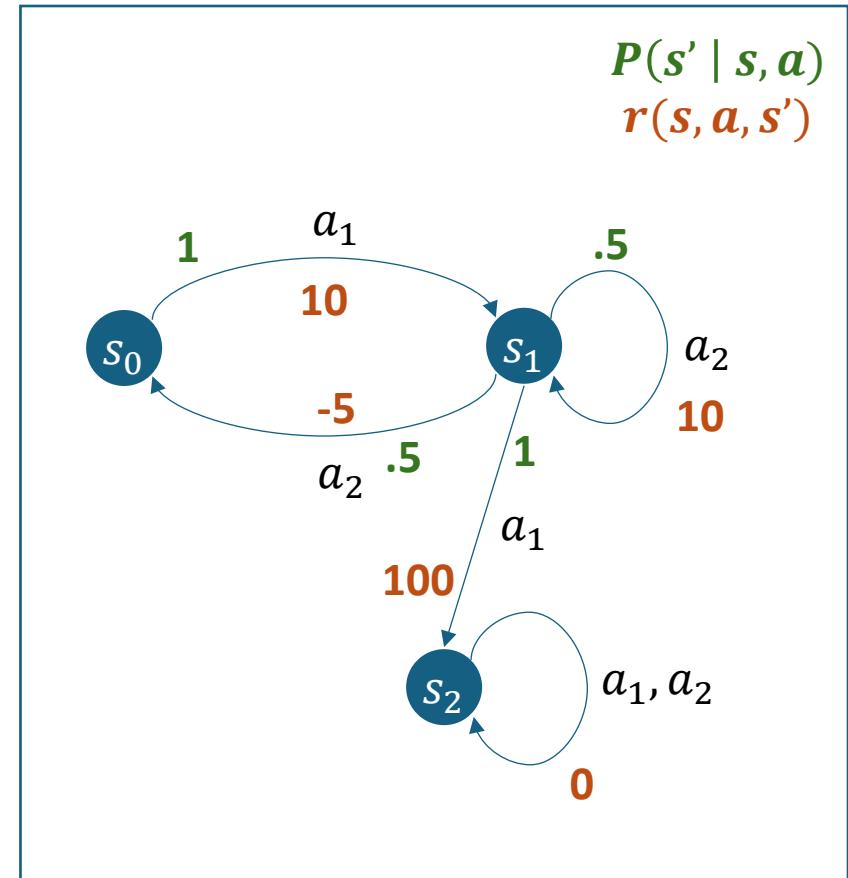
- a finite set of **states** $\mathcal{S} = \{s_0, s_1, s_2, \dots\}$ (initial state s_0)
- a set of available **actions** $ACTIONS(s)$ in each state s
- a **transition model** $P(s' | s, a)$ where $a \in ACTIONS(s)$
- a **reward function** $r(s)$ where the immediate reward depends on the current state (often $r(s, a, s')$ is used to make modelling easier)

MDPs model sequential decision problems with

- a fully observable, stochastic, and known environment;
- a Markovian transition model (i.e., future states do not depend on past states given the current state);
- additive immediate rewards.

Time horizon

- **Infinite horizon**: non-episodic (continuous) tasks with no terminal state.
- **Finite horizon**: episodic tasks. Episode ends after a number of periods or when a terminal state is reached. Episodes contain a sequence of several actions that affect each other.



Example: 4x3 Grid World

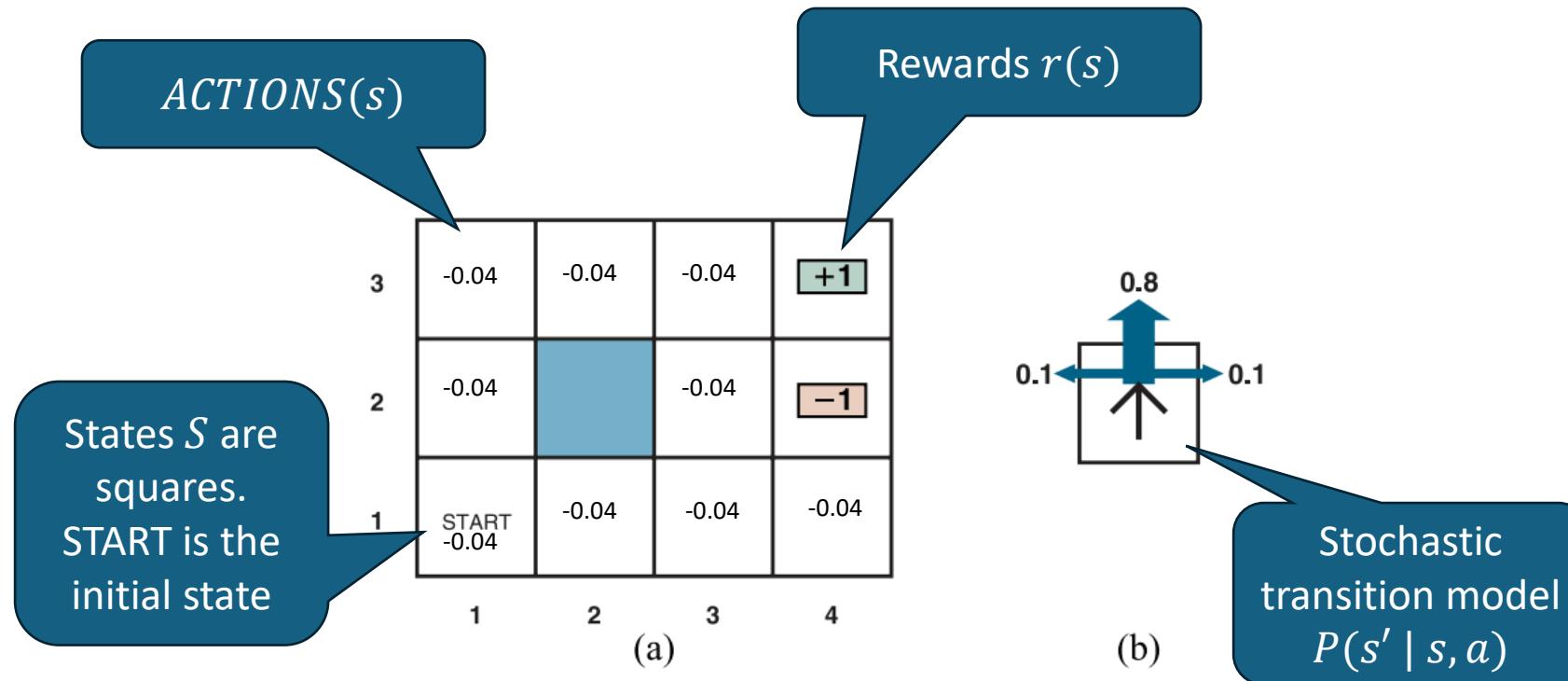


Figure 17.1 (a) A simple, stochastic 4×3 environment that presents the agent with a sequential decision problem. (b) Illustration of the transition model of the environment: the “intended” outcome occurs with probability 0.8, but with probability 0.2 the agent moves at right angles to the intended direction. A collision with a wall results in no movement. Transitions into the two terminal states have reward +1 and -1, respectively, and all other transitions have a reward of -0.04.

Since we know the complete MDP model, we can solve this as a **planning problem**.

For each square: specify what direction should we try to go to maximize the expected total utility.

This is called a **policy** written as the function

$$\pi: S \rightarrow \text{ACTIONS}(S)$$

Policy as a Table

s	Action $\pi(s)$
(1,1)	Up
...	...
...	...

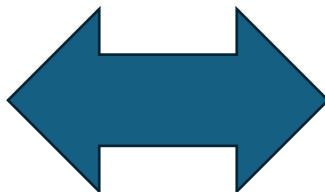
Value Function

- A policy $\pi = \{\pi(s_0), \pi(s_1), \dots\}$ defines for each state which action to take.
- The expected utility of being in state s under policy π (i.e., following the policy starting from s) can be calculated as the sum of the immediate rewards over the visited sequence of states:

$$U^\pi(s) = \mathbb{E}_\pi \left[\sum_{t=0}^{\infty} \gamma^t r(s_t) \mid s_0 = s \right]$$

- $U^\pi(s)$ (also often written as $V(s)$) is called **the value function**. It is stored as a table.

Value Function			
3	0.8516	0.9078	0.9578
2	0.8016		0.7003
1	0.7453	0.6953	0.6514
	1	2	3
	4		



Value Function	
s	State Value $V(s)$
(1,1)	0.7453
(1,2)	0.8016
...	...

γ .. Discounting factor to give more weight to immediate rewards.

\mathbb{E}_π ... Expectation over sequences that can be created by following π .

$r(s)$.. Reward function.

Planning: Finding the Optimal Policy

- The goal of solving an MDP is to find an optimal policy π that maximizes the expected future utility for each state

$$\pi^*(s) = \operatorname{argmax}_{\pi} U^{\pi}(s) \quad \text{for all } s \in \mathcal{S}$$

- **Issue:** π^* depends on U^{π} and vice versa!
- The problem can be formulated recursively using the **Bellman equation** which holds for the optimal value function U (“Bellman optimality condition”):

$$U^{\pi^*}(s) = r(s) + \gamma \max_{a \in A} \sum_{s'} P(s'|s, a) U^{\pi^*}(s')$$

Immediate
Reward

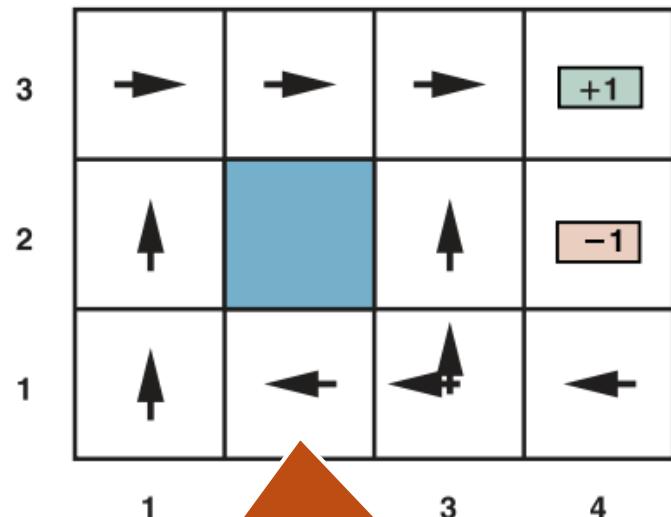
π^* uses the
best action

Expectation

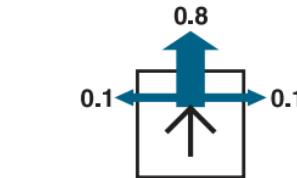
Utility of the next state

Example Solution: 4x3 Grid World

Optimal action in each state
(policy π^*)



It is optimal to walk away from the +1 square to avoid the -1 square!



Greedy policy:
Always pick the action
leading to the state with
the highest expected utility.

Value of being in a state $U^{\pi^*}(s)$
(given that we will follow π^*)

3	0.8516	0.9078	0.9578	+1
2	0.8016		0.7003	-1
1	0.7453	0.6953	0.6514	0.4279

$$\gamma = 1$$

How do we find the optimal value function/optimal policy?

Policy Iteration

Value Iteration

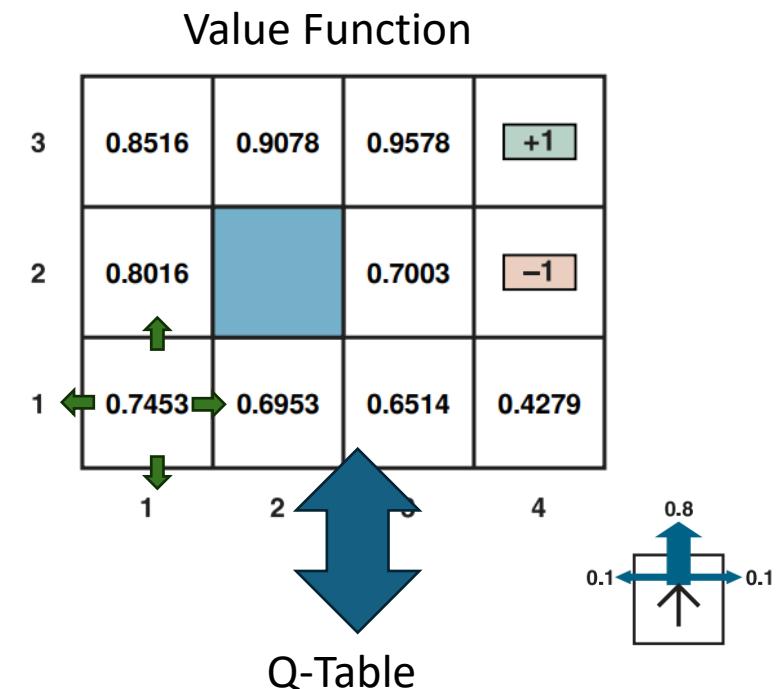
Q-Function

- $Q(s, a)$ is called the state-action value function. It gives the expected utility of taking action a in state s and then following the policy.

$$Q(s, a) = r(s) + \gamma \sum_{s'} P(s'|s, a)U(s')$$

Immediate Reward

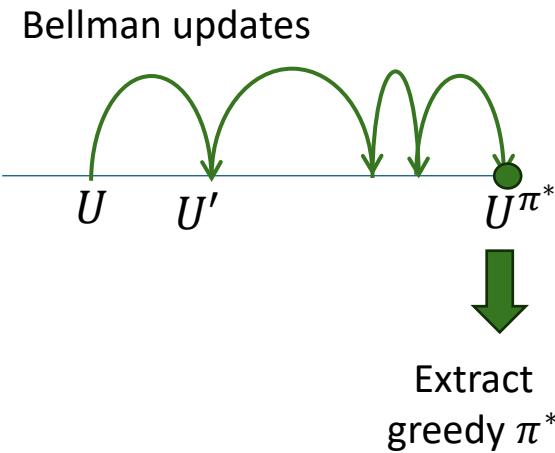
Expected utility of the next state



- The Relationship with the state value function: $U(s) = \max_{a \in A(s)} Q(s, a)$
- The Q-function lets us compare the value of taking different action in a given state. It is used in algorithms to determine what action is the best.

Value Iteration: Estimate the Optimal Value Function U^{π^*}

Algorithm: Start with a U table (vector) of 0 for all states and then apply the Bellman update over the entries of the table until it converges to the unique optimal solution U^{π^*} .



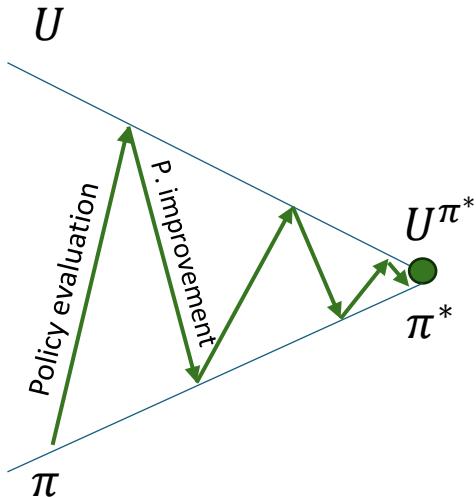
Guarantee: It will converge because the optimal solution is a fixed point of the Bellman operator.

```
function VALUE-ITERATION( $mdp, \epsilon$ ) returns a utility function
  inputs:  $mdp$ , an MDP with states  $S$ , actions  $A(s)$ , transition model  $P(s' | s, a)$ ,
          rewards  $R(s, a, s')$ , discount  $\gamma$ 
           $\epsilon$ , the maximum error allowed in the utility of any state
  local variables:  $U, U'$ , vectors of utilities for states in  $S$ , initially zero
                   $\delta$ , the maximum relative change in the utility of any state

  repeat
     $U \leftarrow U'$ ;  $\delta \leftarrow 0$                                 Sweep over the  $U$  table
    for each state  $s$  in  $S$  do
       $U'[s] \leftarrow \max_{a \in A(s)} Q\text{-VALUE}(mdp, s, a, U)$     Bellman update: Value of the best action in state  $s$ .
      if  $|U'[s] - U[s]| > \delta$  then  $\delta \leftarrow |U'[s] - U[s]|$ 
    until  $\delta \leq \epsilon(1 - \gamma)/\gamma$ 
  return  $U$                                               Convergence? Uses a proxy for policy loss
                                                         $\|U^{\pi} - U\|_{\infty}$  as the stopping criterion
                                                         $U$  converges to  $U^{\pi^*}$  and we can extract  $\pi^*$ 
```

Policy Iteration: Find the Optimal Policy π^*

Policy iteration tries to directly find the optimal policy by iterating policy evaluation and improvement.



Guarantee: It will converge because each step improves the utility/policy and there is a finite number of steps.

```
function POLICY-ITERATION(mdp) returns a policy
  inputs: mdp, an MDP with states  $S$ , actions  $A(s)$ , transition model  $P(s' | s, a)$ 
  local variables:  $U$ , a vector of utilities for states in  $S$ , initially zero
     $\pi$ , a policy vector indexed by state, initially random

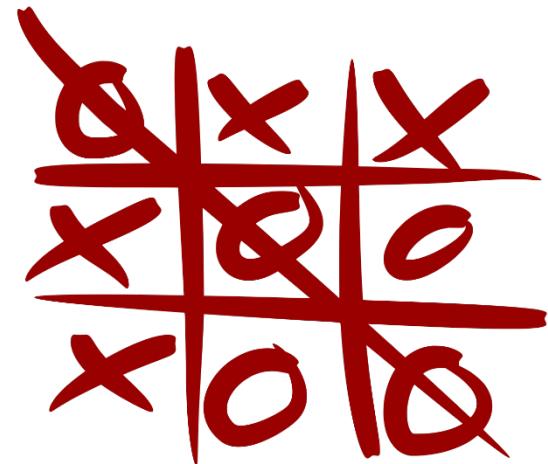
  repeat
     $U \leftarrow \text{POLICY-EVALUATION}(\pi, U, \text{mdp})$ 
    unchanged?  $\leftarrow$  true
    for each state  $s$  in  $S$  do
       $a^* \leftarrow \underset{a \in A(s)}{\text{argmax}} \text{Q-VALUE}(\text{mdp}, s, a, U)$ 
      if  $\text{Q-VALUE}(\text{mdp}, s, a^*, U) > \text{Q-VALUE}(\text{mdp}, s, \pi[s], U)$  then
         $\pi[s] \leftarrow a^*$ ; unchanged?  $\leftarrow$  false
    until unchanged?
  return  $\pi$ 
```

Estimate U given the current policy (either solve an LP or value iteration with fixed policy)

π converges to π^*
(and U converges to U^{π^*})

Convergence test

Find the Optimal Policy for Tic-Tac-Toe



Definitions from Chapter 5 on Games for a goal-based agent:

s_0	Empty board.	
$Actions(s)$	Play empty squares.	
$Result(s, a)$	Symbol (x/o) is placed on empty square.	
$Terminal(s)$	Did a player win or is the game a draw?	
$Utility(s)$	+1 if x wins, -1 if o wins and 0 for a draw. Utility is only defined for terminal states.	

Implementation as a planning agent:

1. Model the environment as an MDP. It is completely described by the rules of the game.
2. Plan the optimal policy $\pi^*(s)$ for each state (e.g., using value iteration).
3. Executed the policy.

Potential issues:

- There are many states, so the state value table $U(s)$ has many entries.
- The stochastic transition model $P(s'|s, a)$ needs to be known. We need to assume the other player's policy.
- The tables (value function, policy) are very large. This does not scale for more complicated games (e.g., Connect-4).
- For games, all the rewards are delayed. Immediate rewards are always 0 until the end of the game.

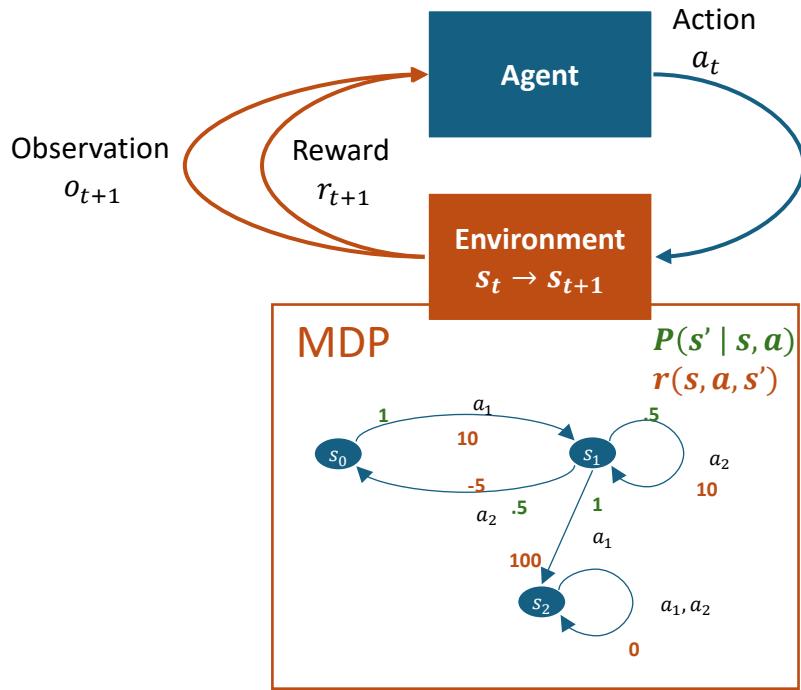
This makes planning hard! An alternative solution is to use online learning with model-free reinforcement learning methods.

(Model-Free) Reinforcement Learning

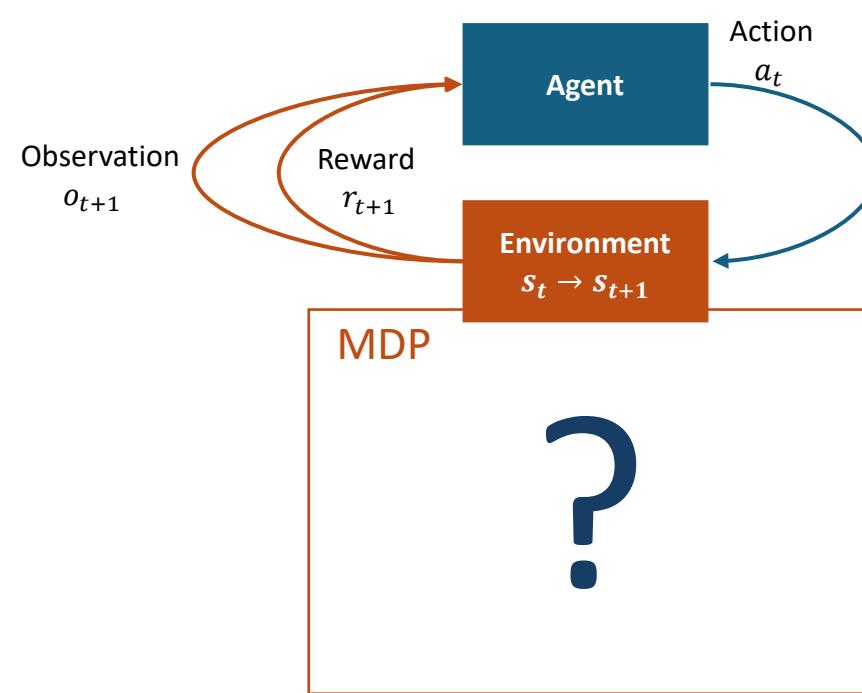
AIMA Chapter 22

Model-based vs. Model-free Reinforcement Learning (RL)

Model-based RL



Model-free RL



Use the MDP model for **planning**
(e.g., value iteration, policy iteration)

An unknown MDP model means we have
to try actions and use **online learning**.

Reinforcement Learning (RL)

- RL assumes that the problem can be modeled as a **Markov Decision Process (MDP)**.
- However, we do not know the transition or the reward model. This means we have an **unknown environment**, and we need “model-free” methods.
- We cannot use offline planning in unknown environments. The agent needs to explore the environment (try actions) and **use the reward signal to update its estimate of the utility of states and actions**. This is an online learning process that provides positive reinforcement through rewards.
- A popular algorithm is Q-Learning, which tries to learn the state-action value function of important states.

$$\text{Q-Table} \rightarrow \pi(s) = \operatorname{argmax}_{a \in A(s)} Q(s, a)$$

Q-Learning

Q-Learning learns the state-action value function as a table from interactions with the environment.

s	a	$Q(s, a)$

function Q-LEARNING-AGENT(*percept*) **returns** an action

inputs: *percept*, a percept indicating the current state s' and reward signal r

persistent: Q , a table of action values indexed by state and action, initially zero

Encodes learned policy

A new episode starts with no previous state.

N_{sa} , a table of frequencies for state-action pairs, initially zero

s, a , the previous state and action, initially null

if s is not null **then**

increment $N_{sa}[s, a]$

$$Q[s, a] \leftarrow Q[s, a] + \alpha(N_{sa}[s, a])(r + \gamma \max_{a'} Q[s', a'] - Q[s, a])$$

$s, a \leftarrow s', \operatorname{argmax}_{a'} f(Q[s', a'], N_{sa}[s', a'])$

Learning rate

Make $Q[s, a]$ a little more similar to the received reward + the best Q-value of the successor state.

return a

Behavior policy: $f(\cdot)$ is the exploration function and decides on the next action. As N increases, it can exploit good actions more.

Tabular Methods vs. Value Function Approximation

- U (or Q) tables needs to store and estimate one entry for each state (state/action combination).
- Issues and possible solutions
 - Too many entries to store → lossy compression
 - Many combinations are rarely seen → generalize to unseen entries
- **Idea:** Estimate the state value by learning an approximation function $\hat{U}(s) = h_{\theta}(s)$ based on features of s (ML).
- **Example:** 4x3 Grid World with a linear combination of state features (x, y) and learn θ from observed data.

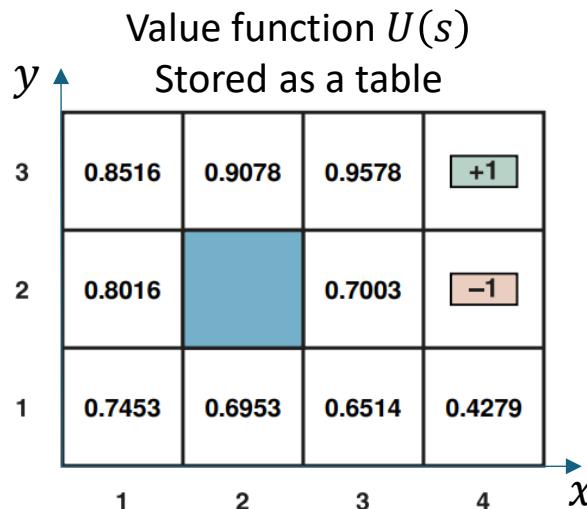


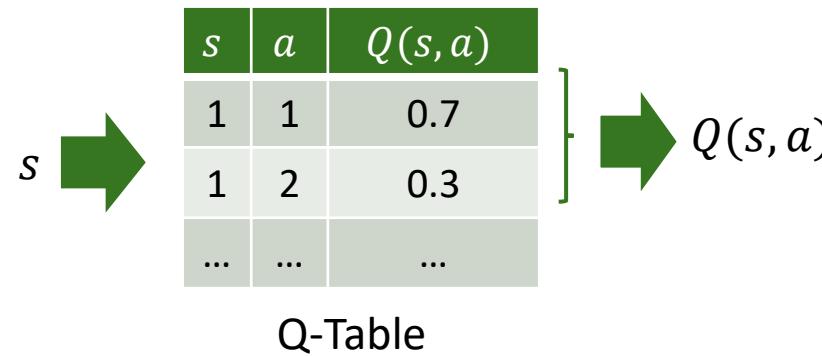
Table vs. approximate $U(s)$

Example: Linear approximation using state features (x, y)

$$\hat{U}_{\theta}(x, y) = \theta_0 + \theta_1 x + \theta_2 y$$

$\theta = (\theta_0, \theta_1, \theta_2)$ can be updated iteratively after each new observed reward using gradient descent.

Traditional Tabular Q-Learning



```

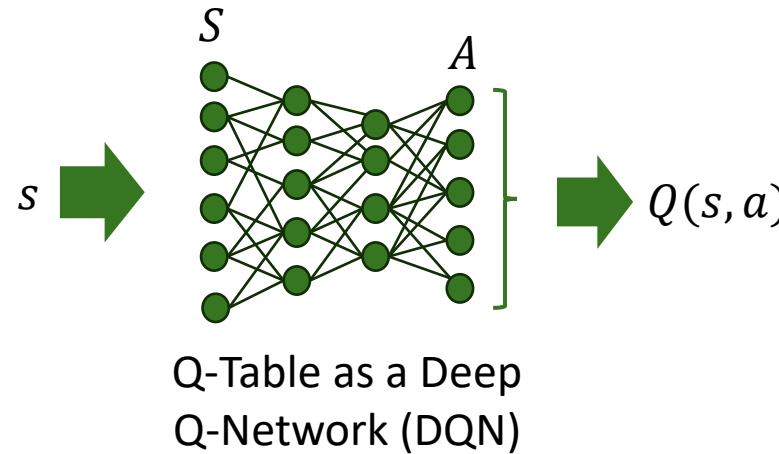
function Q-LEARNING-AGENT(percept) returns an action
  inputs: percept, a percept indicating the current state  $s'$  and reward signal  $r$ 
  persistent:  $Q$ , a table of action values indexed by state and action, initially zero
   $N_{sa}$ , a table of frequencies for state–action pairs, initially zero
   $s, a$ , the previous state and action, initially null

  if  $s$  is not null then
    increment  $N_{sa}[s, a]$ 
     $Q[s, a] \leftarrow Q[s, a] + \alpha(N_{sa}[s, a])(r + \gamma \max_{a'} Q[s', a'] - Q[s, a])$ 
     $s, a \leftarrow s', \text{argmax}_{a'} f(Q[s', a'], N_{sa}[s', a'])$ 
  return  $a$ 

```

target	prediction
$Q[s, a] \leftarrow Q[s, a] + \alpha(N_{sa}[s, a])(r + \gamma \max_{a'} Q[s', a'] - Q[s, a])$	$Q[s, a]$

Deep Q-Learning



Target networks: It turns out that the Q-Network is unstable if the same network is used to estimate $Q(s, a)$ and also $Q(s', a')$. Deep Q-Learning uses a second target network for $Q(s', a')$ that is updated with the prediction network every C steps.

Experience replay: To reduce instability more, generate actions using the current network and store the experience $\langle s, a, r, s' \rangle$ in a table. Regularly use samples from the table to update the networks..

Loss function: squared difference between prediction and target.

Summary

- Agents can learn the value of being in a state from **reward signals**.
- Rewards can be delayed (e.g., at the end of a game).
- **Unknown transition models** lead to the need for exploration by trying actions (model-free methods such as Q-Learning).
- All RL problems are computationally very expensive and often can only be solved by **approximation**. The state-of-the-art approach is to use deep artificial neural networks for function approximation.
- Not covered here: Not being able to **fully observe the state** makes the problem more difficult and leads to Partially Observable MDPs.