CS5/7320
Artificial Intelligence

Reinforcement Learning
AIMA Chapter 17+22

Slides by Michael Hahsler
with figures from the AIMA textbook.

This work is licensed under a Creative Commons . -
Attribution-ShareAlike 4.0 International License. Online Material

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

From Chapter 2:
Agents That Learn

Critic: How is the agent currently Performance standard

performing? X +

- A
Critic ~———————— _ Sensors -
reward
Learning Element: Improves the feedback
performance element and changes
— chang;

]

o3
. . =.
how it selects actions. ~ Learning " Performance 3
. . . element |fagp———— element =
E.g., adding rules, changing weights knowledge - 5
learning J g
goals =
| Problem
Problem generators: Explore new -

actions. @gent Actuators

Positive feedback from the critic, called “reward,” reinforces the performance element.

Reinforcement Learning: How do we learn a good performance element from rewards using trial-and-error?

...........
...........

.......
.......

ooooo

Remember Chapter 16:
Making Simple Decisions

. U(s’
Current Action a Future (5
state s state s’

For a decision that we make frequently and making it once does
not affect the future decisions (episodic environment), we can
use the Principle of Maximum Expected Utility (MEU).

Given the expected utility of an action

EU(a) = z z P(s) P(s'|s,a) U(s")

S/
choose action that maximizes the expected utility:

a” = argmax, EU(a)

Now we will talk about sequential decision making.

P(s) ... Uncertainty about current state (= partial observability)
P(s'|s, a) ... Stochastic transition function (= non deterministic actions).

U(s') ... cardinal utility function.

Sequential Decision Problems

Current %o Ve
state s a > ar

« Utility-based agent: The agent’s utility depends on a sequence of decisions that depend on each other.

* Sequential decision problems incorporate utility (called immediate and long-term reward), uncertainty, and
sensing.

So S2

Action 51

a ‘ Sequence: (0g, 1), ag, (01,71), a1, (05,77), a5, ...

Goal: Observations and rewards depend on the
state of the system, and the agent wants to
maximize the expected discounted reward:

T
U=E ztht
t=0

Observation
Ot+1

Environment
St ™ St+1

R;... reward at time t as a random variable
y ... discounting factor
T ... time horizon may be infinity

If we have a model of the
environment, then we can plan.

An Environment Model:
Markov Decision Process (MDP)

MDPs are discrete-time stochastic control processes defined by:

* afinite set of states S = {5, 51, S5, ... } (initial state s) P(s’ |
* aset of available actions ACTIONS(s) in each state s SIS fl)
* atransition model P(s’ | s,a) where a € ACTIONS(s) r(s,a,s’)

* areward function r(s) where the immediate reward depends on the current
state (often r(s, a, s’) is used to make modelling easier)

MDPs model sequential decision problems with

a
» a fully observable, stochastic, and known environment; ?
* a Markovian transition model (i.e., future states do not depend on past states 10
given the current state);
* additive immediate rewards.
Time horizon
* Infinite horizon: non-episodic (continuous) tasks with no terminal state. a,d;

* Finite horizon: episodic tasks. Episode ends after a number of periods or when
a terminal state is reached. Episodes contain a sequence of several actions that 0
affect each other.

Example: 4x3 Grid World

Rewards r(s)

-0.04
-0.04
States S are
squares. 008
START is the Stochastic

transition model
P(s'|s,a)

Figure 17.1 (a) A simple, stochastic 4 x 3 environment that presents the agent with a se-
quential decision problem. (b) Illustration of the transition model of the environment: the
“intended” outcome occurs with probability 0.8, but with probability 0.2 the agent moves
at right angles to the intended direction. A collision with a wall results in no movement.
Transitions into the two terminal states have reward +1 and —1, respectively, and all other
transitions have a reward of —0.04.

initial state

Since we know the complete
MDP model, we can solve
this as a planning problem.

For each square: specify
what direction should we try
to go to maximize the

expected total utility.

This is called a policy written
as the function

m:S - ACTIONS(S)

Policy as a Table

(1L,1) Up

Value Function

* Apolicy m = {n(sy), 7(s,), ... } defines for each state which action to take.

* The expected utility of being in state s under policy 7 (i.e., following the policy starting ¥ .. Discounting factor to
from ssjcan be calculated as the sum of the immediate rewards over the visited sequence

of states: give more weight to

immediate rewards.

U™(s) = Eg [2 Yer(se) ISo = S‘ E, ... Expectation over
t=0

sequences that can be

« U™(s) (also often written as VV(s)) is called the value function. It is stored as a table. created by following .

Value Function r(s) .. Reward function.

Value Function
3 | 0.8516 | 0.9078 | 0.9578

State Value V (s)

(1,1) 0.7453

2 0.8016 0.7003

g

(1,2) 0.8016

1 0.7453 | 0.6953 | 0.6514 | 0.4279

Planning: Finding the Optimal Policy

* The goal of solving an MDP is to find an optimal policy T that maximizes the expected future utility for each
state

n*(s) = argmaxU™(s) foralls€ S
T

* Issue: m* depends on U™ and vice versa!

* The problem can be formulated recursively using the Bellman equation which holds for the optimal value
function U (“Bellman optimality condition”):

U™ (s) =r(s) + y max E P(s'|s,a) U™ (s")
a
S/

\ J

|

Expectation

Immediate " uses the Utility of the next state

Reward best action

Example Solution: 4x3 Grid World

Optimal action in each state Value of being in a state U™ (s)

(policy ir*) Greedy policy: : . *
Always pick the action (given that we will follow 7*)

leading to the state with
3| W= the highest expected utility. 3 | 08516 | 0.9078 | 0.9578

2 | A b = _ 2 | osote 07003 | [=1]
0.8
1 ‘ -+ J -+ 0_1@0_1 1 | 0.7453 | 0.6953 | 0.6514 | 0.4279

It is optimal to walk away from the +1 square to avoid the -1 square!

How do we find the optimal value function/optimal policy?

Policy Iteration Value Iteration

Q-Function

* Q(s,a)is called the state-action value function. It gives the expected
utility of taking action a in state s and then following the policy.

* The Relationship with the state value function: U(s) = max Q(s,a)

* The Q-function lets us compare the value of taking different action is
a given state. It is used in algorithms to determine what action is the

best.

Immediate
Reward

Q(s,0) =7(9) +y) P(s'ls,)U(s)

Expected utility of the

next state

acA(s)

Value Function

3 | 0.8516 | 0.9078 | 0.9578
2 | 0.8016 0.7003 | [=1]

1 €= 0.7453m) 0.6953

0.6514 | 0.4279

¥

1

Q-Table

4

0.8

mﬁm

KRN

(1,1)
(1,1)
(1,1)
(1,1)

Up
Right
Down

Left

0.7453
0.6709
0.7003
0.7109

Value Iteration: Estimate the Optimal Value Function um

Algorithm: Start with a U table (vector) of O for all states and then apply the Bellman update over the entries
of the table until it converges to the unique optimal solution ur.

function VALUE-ITERATION(mdp, €) returns a utility function

Bellman updates inputs: mdp, an MDP with states S, actions A(s), transition model P(s’| s, a),

rewards R(s, a, s’), discount ~y
W\ e, the maximum error allowed in the utility of any state
' " local variables: U, U’, vectors of utilities for states in S, initially zero

u u ur
l d, the maximum relative change in the utility of any state
Sweep over
Extract repeat , the Uptable Bellman update: Value of
greedy 7" U+ U640 the best action in state s.

for each state s in S do
U'[s] +=max, ¢ 4(s) Q-VALUE(mdp.s,a,U)
if |U'[s] — Uls|| > dthend« |U'[s] — Uls]|
until § < €(1 —~)/y
return U

Guarantee: It will
converge because the
optimal solution is a fixed
point of the Bellam

T[*
Convergence? Uses a proxy for policy loss u converges to u .
operator. lU™ — U]l as the stopping criterion and we can extract 7

Policy Iteration: Find the Optimal Policy ™

Policy iteration tries to directly find the optimal policy by iterating policy evaluation and improvement.

Guarantee: It will
converge because each
step improves the
utility/policy and there is a
finite number of steps.

improvement. if Q-VALUE(mdp, s, a*, U) > Q-VALUE(mdp, s, w[s], U) then

function POLICY-ITERATION(mdp) returns a policy
inputs: mdp, an MDP with states S, actions A(s), transition model P(s’ | s, a)
local variables: U, a vector of utilities for states in S, initially zero
m, a policy vector indexed by state, initially random

repeat Estimate U given the current
U < POLICY-EVALUATION(7, U, mdp) policy (either solve an LP or
unchanged? < true value iteration with fixed policy)

— for each state s in S do

o 7[s] < a*; unchanged? < false
until unchanged?
return 7

T converges to *

(and U convergesto U™)
Convergence test

x
Find the Optimal Policy for Tic-Tac-Toe 3

O

Definitions from Chapter 5 on Games for a goal-based agent: x O

So Empty board.

Actions(s) Play empty squares.

Result(s, a) Symbol (x/o) is placed on empty square.— Stochastic transition model P(s’[s, a)
Terminal(s) Did a player win or is the game a draw?

Utility(s) +1 if x wins, -1 if o wins and 0 for a draw. :

s _ _ Reward function 7(s)
Utility is only defined for terminal states.

Implementation as a planning agent:

1. Model the environment as an MDP. It is completely described by the rules of the game.
2. Plan the optimal policy w*(s) for each state (e.g., using value iteration).
3. Executed the policy.

Potential issues:
* There are many states, so the state value table U(s) has many entries.
* The stochastic transition model P(s’|s, a) needs to be known. We need to assume the other player’s policy.
* The tables (value function, policy) are very large. This does not scale for more complicated games (e.g., Connect-4).
* For games, all the rewards are delayed. Immediate rewards are always 0 until the end of the game.

This makes planning hard! An alternative solution is to use online learning with model-free reinforcement learning methods.

Model-based vs. Model-free Reinforcement Learning (RL)

Model-free RL

Model-based RL
Reward

Action
)
Tt+1 m

MDP P(s'|s,a)

r(s,a,s’)
1/_‘1]\
10
o o).
* 5 10
a S 1
a

100/

1
@ ay, ay
0

Action
Agent at

Observation

Observation Reward

Ot+1

Ot+1 Tt+1

MDP

?

An unknown MDP model means we have
to try actions and use online learning.

Use the MDP model for planning
(e.g., value iteration, policy iteration)

Reinforcement Learning (RL)

. I(RL ass)umes that the problem can be modeled as a Markov Decision Process
MDP).

* However, we do not know the transition or the reward model. This means we
have an unknown environment, and we need “model-free” methods.

* We cannot use offline planning in unknown environments. The agent needs to
explore the environment (try actions) and use the reward signal to update its
estimate of the utility of states and actions. This is an online learning process
that provides positive reinforcement through rewards.

* A popular algorithm is Q-Learning, which tries to learn the state-action value
function of important states.

Q-Table = n(s) = argmax Q(s,a)

Q-Learning slal 0G0

Q-Learning learns the state-action value function as a
table from interactions with the environment.

function Q-LEARNING-AGENT(percept) returns an action

inputs: percept, a percept indicating the current state s’ and reward signal r
persistent: (), a table of action values indexed by state and action, initially zero
Encodes learned policy Ngq, a table of frequencies for state—action pairs, initially zero

s, a, the previous state and action, initially null

A new episode
starts with no

previous state. if S iS not Ilull thEll Learning rate
increment N, [s, a]

Qls,al + Q[s,a] + a(Ngl[s,al)(r + v max, Q[s’,ad’] — Qls,al)
s,a< s’ argmax,_, f(Qls', a’], Ny.[s',a']) TD-error
return a

Make Q[s, a] a little more similar to the received

reward + the best Q-value of the successor state.

Behavior policy: f(+) is the exploration function and decides on
the next action. As N increases, it can exploit good actions more.

Tabular Methods vs. Value Function Approximation

U (or Q) tables needs to store and estimate one entry for each state (state/action combination).

Issues and possible solutions
* Too many entries to store - lossy compression
* Many combinations are rarely seen -> generalize to unseen entries

Idea: Estimate the state value by learning an approximation function U(s) = hg(s) based on features of s (ML).

Example: 4x3 Grid World with a linear combination of state features (x,y) and learn @ from observed data.

Value function U(s)
Y 4 Stored as a table

Example: Linear approximation
3 | 08516 | 0.9078 | 0.9578 using state features (x, y)

Table vs. approximate U(s)

Ug(x, y) =60+ 6:x+ 06,y

2 | 0.8016 0.7003

0 = (0,,04,0,) can be updated
1 | 07453 | 06953 | 0.6514 | 0.4279 iteratively after each new observed
reward using gradient descent.

Traditional Tabular Q-Learning function Q-LEARNING-AGENT(percept) returns an action

inputs: percept, a percept indicating the current state s’ and reward signal r

.n persistent: (), a table of action values indexed by state and action, initially zero
S s,a

Nsaq, a table of frequencies for state—action pairs, initially zero

1 1 0.7 s, a, the previous state and action, initially null
q | oo p

1 2 0.3 if s 1s not null then Lo
increment N,,|[s, a] target prediction
Qls, al « Q[s,a] + a(Ng[s,a])(r + v max, Q[s',a’] —|Q][s, al
Q-Table s, a4 s',argmax, f(Q[s', a’], Nsu[s', a'])
return a
Deep Q-Lea rning Target networks: It turns out that the Q-Network is unstable if the
S same network is used to estimate Q(s, a) and also Q(s',a’). Deep Q-

A

Learning uses a second target network for Q(s’,a’) that is updated
with the prediction network every C steps.

' - Q(s,a) . o . .
Experience replay: To reduce instability more, generate actions using

. the current network and store the experience (s, a,r,s’) in a table.

Q-Table as a Deep Regularly use samples from the table to update the networks..

Q-Network (DQN)

Loss function: squared difference between prediction and target.

Volodymyr Mni et al., Playing Atari with Deep Reinforcement Learning, NIPS Deep Learning Workshop 2013.

https://doi.org/10.48550/arXiv.1312.5602

summary

e Agents can learn the value of being in a state from
reward signals.

* Rewards can be delayed (e.g., at the end of a game).

* Unknown transition models lead to the need for
exploration by trying actions (model-free methods
such as Q-Learning).

* All RL problems are computationally very expensive
and often can only be solved by approximation. The
state-of-the-art approach is to use deep artificial
neural networks for function approximation.

* Not covered here: Not being able to fully observe the
state makes the problem more difficult and leads to
Partially Observable MDPs.

	CS 5/7320 �Artificial Intelligence��Reinforcement Learning�AIMA Chapter 17+22
	From Chapter 2: �Agents That Learn
	Making Complex Decisions:�Sequential Decision Making
	Remember Chapter 16: �Making Simple Decisions
	Sequential Decision Problems
	An Environment Model: �Markov Decision Process (MDP)
	Example: 4x3 Grid World
	Value Function
	Planning: Finding the Optimal Policy
	Example Solution: 4x3 Grid World
	Q-Function
	Value Iteration: Estimate the Optimal Value Function 𝑈 𝜋 ∗
	Policy Iteration: Find the Optimal Policy 𝜋 ∗
	Find the Optimal Policy for Tic-Tac-Toe
	(Model-Free) Reinforcement Learning
	Model-based vs. Model-free Reinforcement Learning (RL)
	Reinforcement Learning (RL)
	Q-Learning
	Tabular Methods vs. Value Function Approximation
	Deep Q-Learning
	Summary

