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From Chapter 2: 
Agents That Learn

Positive feedback from the critic, called “reward,” reinforces the performance element.

Reinforcement Learning: How do we learn a good performance element from rewards using trial-and-error?

Critic: How is the agent currently 
performing?

Learning Element: Improves the 
performance element and changes 

how it selects actions.
E.g., adding rules, changing weights

Problem generators: Explore new 
actions.

reward



Making Complex Decisions:
Sequential Decision Making

AIMA Chapter 17



Remember Chapter 16: 
Making Simple Decisions

For a decision that we make frequently and making it once does 
not affect the future decisions (episodic environment), we can 
use the Principle of Maximum Expected Utility (MEU).
Given the expected utility of an action

𝐸𝐸𝐸𝐸 𝑎𝑎 = �
𝑠𝑠𝑠

�
𝑠𝑠

𝑃𝑃 𝑠𝑠  𝑃𝑃(𝑠𝑠′|𝑠𝑠, 𝑎𝑎)𝑈𝑈(𝑠𝑠′)

choose action that maximizes the expected utility:

𝑎𝑎∗ = argmax𝑎𝑎 𝐸𝐸𝑈𝑈(𝑎𝑎)

Now we will talk about sequential decision making.

ActionCurrent
state 𝒔𝒔

Future 
state 𝒔𝒔𝒔

Action 𝑎𝑎 𝑼𝑼(𝒔𝒔𝒔)

𝑃𝑃 𝑠𝑠  … Uncertainty about current state (= partial observability)
𝑃𝑃(𝑠𝑠′|𝑠𝑠, 𝑎𝑎) … Stochastic transition function (= non deterministic actions).
𝑈𝑈(𝑠𝑠′) … cardinal utility function.



Sequential Decision Problems

• Utility-based agent: The agent’s utility depends on a sequence of decisions that depend on each other. 
• Sequential decision problems incorporate utility (called immediate and long-term reward), uncertainty, and 

sensing.

Environment
𝒔𝒔𝒕𝒕 → 𝒔𝒔𝒕𝒕+𝟏𝟏

Agent

Action 
𝑎𝑎𝑡𝑡 

Observation 
𝑜𝑜𝑡𝑡+1

 

Reward 
𝑟𝑟𝑡𝑡+1

 

Goal: Observations and rewards depend on the 
state of the system, and the agent wants to 
maximize the expected discounted reward: 

𝑈𝑈 = 𝔼𝔼 �
𝑡𝑡=0

𝑇𝑇

𝛾𝛾𝑡𝑡𝑅𝑅𝑡𝑡

𝑅𝑅𝑡𝑡… reward at time 𝑡𝑡 as a random variable
𝛾𝛾 … discounting factor
𝑇𝑇 … time horizon may be infinity

Current
state 𝒔𝒔𝟎𝟎

𝒔𝒔𝟏𝟏
𝑎𝑎0

𝒔𝒔𝑻𝑻−𝟏𝟏 𝒔𝒔𝑻𝑻

𝑼𝑼(𝒔𝒔𝑻𝑻)𝑈𝑈(𝑠𝑠𝑻𝑻−1)𝑼𝑼(𝒔𝒔𝟏𝟏) …
𝑎𝑎1 𝑎𝑎𝑇𝑇−1

Sequence: (𝑜𝑜0, 𝑟𝑟0),𝑎𝑎0, (𝑜𝑜1, 𝑟𝑟1),𝑎𝑎1, (𝑜𝑜2, 𝑟𝑟2),𝑎𝑎2, …

𝑠𝑠0 𝑠𝑠1 𝑠𝑠2

If we have a model of the 
environment, then we can plan.



An Environment Model: 
Markov Decision Process (MDP)
MDPs are discrete-time stochastic control processes defined by:

• a finite set of states 𝒮𝒮 = {𝑠𝑠0, 𝑠𝑠1, 𝑠𝑠2, … } (initial state 𝑠𝑠0) 
• a set of available actions 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑠𝑠) in each state 𝑠𝑠
• a transition model 𝑃𝑃(𝑠𝑠′ | 𝑠𝑠, 𝑎𝑎) where 𝑎𝑎 ∈ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑠𝑠)
• a reward function 𝑟𝑟(𝑠𝑠) where the immediate reward depends on the current 

state (often 𝑟𝑟(𝑠𝑠, 𝑎𝑎, 𝑠𝑠’) is used to make modelling easier)

MDPs model sequential decision problems with
• a fully observable, stochastic, and known environment;
• a Markovian transition model (i.e., future states do not depend on past states 

given the current state);
• additive immediate rewards.

Time horizon
• Infinite horizon: non-episodic (continuous) tasks with no terminal state.
• Finite horizon: episodic tasks. Episode ends after a number of periods or when 

a terminal state is reached. Episodes contain a sequence of several actions that 
affect each other.

𝑠𝑠0 𝑠𝑠1

𝑠𝑠2

𝑎𝑎11
10

𝑎𝑎2
𝑎𝑎1

𝑎𝑎2

.5

.5

1
10-5

100

𝑎𝑎1,𝑎𝑎2

0

𝑷𝑷 𝒔𝒔𝒔 𝒔𝒔,𝒂𝒂)
𝒓𝒓(𝒔𝒔,𝒂𝒂, 𝒔𝒔’)



Example: 4x3 Grid World
Since we know the complete 
MDP model, we can solve 
this as a planning problem.  
For each square: specify 
what direction should we try 
to go to maximize the 
expected total utility.
This is called a policy written 
as the function

𝜋𝜋: 𝑆𝑆 → 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑆𝑆)

-0.04-0.04-0.04

-0.04 -0.04

-0.04
-0.04 -0.04 -0.04

Policy as a Table
𝑠𝑠 Action 𝝅𝝅(𝐬𝐬)

(1,1) Up

… …

… …

Rewards 𝑟𝑟(𝑠𝑠)
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑠𝑠) 

States 𝑆𝑆 are 
squares. 

START is the 
initial state

Stochastic 
transition model
𝑃𝑃(𝑠𝑠𝑠 | 𝑠𝑠, 𝑎𝑎) 



Value Function
• A policy 𝝅𝝅 = 𝜋𝜋 𝑠𝑠0 ,𝜋𝜋 𝑠𝑠1 , …  defines for each state which action to take.
• The expected utility of being in state 𝑠𝑠 under policy 𝜋𝜋 (i.e., following the policy starting 

from 𝑠𝑠) can be calculated as the sum of the immediate rewards over the visited sequence 
of states:

𝑈𝑈𝜋𝜋 𝑠𝑠 = 𝔼𝔼𝜋𝜋 �
𝑡𝑡=0

∞

𝛾𝛾𝑡𝑡𝑟𝑟(𝑠𝑠𝑡𝑡) |𝑠𝑠0 = 𝑠𝑠

• 𝑈𝑈𝜋𝜋(𝑠𝑠) (also often written as 𝑉𝑉(𝑠𝑠)) is called the value function. It is stored as a table.

𝛾𝛾 .. Discounting factor to 
give more weight to 
immediate rewards.

𝔼𝔼𝜋𝜋 … Expectation over 
sequences that can be 
created by following 𝜋𝜋.

𝑟𝑟(𝑠𝑠) .. Reward function.
Value Function
𝑠𝑠 State Value 𝑽𝑽(𝐬𝐬)

(1,1) 0.7453

(1,2) 0.8016

… …

Value Function



Planning: Finding the Optimal Policy
• The goal of solving an MDP is to find an optimal policy 𝝅𝝅 that maximizes the expected future utility for each 

state

   𝜋𝜋∗ 𝑠𝑠 = argmax
𝜋𝜋

𝑈𝑈𝜋𝜋 𝑠𝑠      for all 𝑠𝑠 ∈ 𝒮𝒮 

• Issue: 𝜋𝜋∗ depends on 𝑈𝑈𝜋𝜋 and vice versa!

• The problem can be formulated recursively using the Bellman equation which holds for the optimal value 
function 𝑈𝑈 (“Bellman optimality condition”):  

𝑈𝑈𝜋𝜋∗ 𝑠𝑠 = 𝑟𝑟 𝑠𝑠 + 𝛾𝛾max
𝑎𝑎∈𝐴𝐴

�
𝑠𝑠′

𝑃𝑃 𝑠𝑠′ 𝑠𝑠, 𝑎𝑎  𝑈𝑈𝜋𝜋∗ 𝑠𝑠′

𝜋𝜋∗ uses the 
best action

ExpectationImmediate 
Reward

Utility of the next state



Example Solution: 4x3 Grid World 
Optimal action in each state

(policy 𝝅𝝅∗) Greedy policy:
Always pick the action 

leading to the state with 
the highest expected utility.

It is optimal to walk away from the +1 square to avoid the -1 square!

Value of being in a state 𝑼𝑼𝝅𝝅∗(𝒔𝒔) 
(given that we will follow 𝝅𝝅∗)

𝛾𝛾 = 1

How do we find the optimal value function/optimal policy?

Policy Iteration Value Iteration



Q-Function
• 𝑄𝑄(𝑠𝑠,𝑎𝑎) is called the state-action value function. It gives the expected 

utility of taking action 𝑎𝑎 in state 𝑠𝑠 and then following the policy.

𝑄𝑄 𝑠𝑠, 𝑎𝑎 = 𝑟𝑟 𝑠𝑠 + 𝛾𝛾�
𝑠𝑠𝑠

 𝑃𝑃 𝑠𝑠′ 𝑠𝑠,𝑎𝑎 𝑈𝑈(𝑠𝑠′)

• The Relationship with the state value function: 𝑈𝑈 𝑠𝑠 = max
𝑎𝑎∈𝐴𝐴(𝑠𝑠)

𝑄𝑄 𝑠𝑠, 𝑎𝑎

• The Q-function lets us compare the value of taking different action is 
a given state. It is used in algorithms to determine what action is the 
best.

Immediate 
Reward

Expected utility of the 
next state Q-Table

𝑠𝑠 𝑎𝑎 𝑄𝑄(𝑠𝑠, 𝑎𝑎)

(1,1) Up 0.7453

(1,1) Right 0.6709

(1,1) Down 0.7003

(1,1) Left 0.7109

… … …

Value Function



𝑈𝑈 converges to 𝑈𝑈𝜋𝜋∗ 
and we can extract 𝜋𝜋∗

Value Iteration: Estimate the Optimal Value Function 𝑈𝑈𝜋𝜋∗

Algorithm: Start with a 𝑈𝑈 table (vector) of 0 for all states and then apply the Bellman update over the entries 
of the table until it converges to the unique optimal solution 𝑈𝑈𝜋𝜋∗ . 

Bellman update: Value of 
the best action in state s.

Convergence? Uses a proxy for policy loss 
𝑈𝑈𝜋𝜋 − 𝑈𝑈 ∞ as the stopping criterion 

𝑈𝑈𝜋𝜋∗𝑈𝑈 𝑈𝑈𝑈

Bellman updates

Extract
 greedy 𝜋𝜋∗ 

Sweep over 
the 𝑈𝑈 table

Guarantee: It will 
converge because the 
optimal solution is a fixed 
point of the Bellam 
operator.



𝜋𝜋 converges to 𝜋𝜋∗
(and 𝑈𝑈 converges to 𝑈𝑈𝜋𝜋∗)

Policy Iteration: Find the Optimal Policy 𝜋𝜋∗

Estimate 𝑈𝑈 given the current 
policy (either solve an LP or 

value iteration with fixed policy)

Greedy policy 
Improvement.

Policy iteration tries to directly find the optimal policy by iterating policy evaluation and improvement.

𝑈𝑈𝜋𝜋∗

𝑈𝑈

𝜋𝜋∗

𝜋𝜋

Convergence test 

Guarantee: It will 
converge because each 
step improves the 
utility/policy and there is a 
finite number of steps.



Find the Optimal Policy for Tic-Tac-Toe
Definitions from Chapter 5 on Games for a goal-based agent: 

𝑠𝑠0  Empty board.
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑠𝑠)  Play empty squares.
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑠𝑠, 𝑎𝑎) Symbol (x/o) is placed on empty square.
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑠𝑠) Did a player win or is the game a draw?
𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈(𝑠𝑠)                       +1 if x wins, -1 if o wins and 0 for a draw.
      Utility is only defined for terminal states.

Reward function 𝑟𝑟(𝑠𝑠)

Stochastic transition model 𝑃𝑃 𝑠𝑠′ 𝑠𝑠,𝑎𝑎

Implementation as a planning agent: 
1. Model the environment as an MDP. It is completely described by the rules of the game.
2. Plan the optimal policy 𝜋𝜋∗ 𝑠𝑠  for each state (e.g., using value iteration).
3. Executed the policy.

Potential issues:
• There are many states, so the state value table 𝑈𝑈 𝑠𝑠  has many entries.
• The stochastic transition model 𝑃𝑃 𝑠𝑠′ 𝑠𝑠,𝑎𝑎  needs to be known. We need to assume the other player’s policy. 
• The tables (value function, policy) are very large. This does not scale for more complicated games (e.g., Connect-4).
• For games, all the rewards are delayed. Immediate rewards are always 0 until the end of the game. 

This makes planning hard! An alternative solution is to use online learning with model-free reinforcement learning methods.



(Model-Free) Reinforcement Learning
AIMA Chapter 22



Model-based vs. Model-free Reinforcement Learning (RL)

Agent

Action 
𝑎𝑎𝑡𝑡 

Observation 
𝑜𝑜𝑡𝑡+1

 

Reward 
𝑟𝑟𝑡𝑡+1

 Environment
𝒔𝒔𝒕𝒕 → 𝒔𝒔𝒕𝒕+𝟏𝟏

Model-based RL

𝑠𝑠0 𝑠𝑠1

𝑠𝑠2

𝑎𝑎11
10

𝑎𝑎2
𝑎𝑎1

𝑎𝑎2

.5

.5

1
10-5

100

𝑎𝑎1, 𝑎𝑎2

0

𝑷𝑷 𝒔𝒔𝒔 𝒔𝒔,𝒂𝒂)
𝒓𝒓(𝒔𝒔,𝒂𝒂, 𝒔𝒔’)

MDP

Environment
𝒔𝒔𝒕𝒕 → 𝒔𝒔𝒕𝒕+𝟏𝟏

Agent

Action 
𝑎𝑎𝑡𝑡 

Observation 
𝑜𝑜𝑡𝑡+1

 

Reward 
𝑟𝑟𝑡𝑡+1

 

Model-free RL

?
MDP

Use the MDP model for planning 
(e.g., value iteration, policy iteration)

An unknown MDP model means we have 
to try actions and use online learning.



Reinforcement Learning (RL)

• RL assumes that the problem can be modeled as a Markov Decision Process 
(MDP). 

• However, we do not know the transition or the reward model. This means we 
have an unknown environment, and we need “model-free” methods.

• We cannot use offline planning in unknown environments. The agent needs to 
explore the environment (try actions) and use the reward signal to update its 
estimate of the utility of states and actions. This is an online learning process 
that provides positive reinforcement through rewards.

• A popular algorithm is Q-Learning, which tries to learn the state-action value 
function of important states.



Q-Learning
Q-Learning learns the state-action value function as a 
table from interactions with the environment. 

Behavior policy: 𝑓𝑓(⋅) is the exploration function and decides on 
the next action. As 𝑁𝑁 increases, it can exploit good actions more.

Make 𝑄𝑄 𝑠𝑠,𝑎𝑎  a little more similar to the received 
reward + the best Q-value of the successor state.

A new episode 
starts with no 
previous state. Learning rate

Q-Table

𝑠𝑠 𝑎𝑎 𝑄𝑄(𝑠𝑠, 𝑎𝑎)

TD-error

Encodes learned policy

𝜋𝜋 𝑠𝑠 = argmax
𝑎𝑎∈𝐴𝐴(𝑠𝑠)

𝑄𝑄 𝑠𝑠,𝑎𝑎



Tabular Methods vs. Value Function Approximation
• 𝑈𝑈 (or 𝑄𝑄) tables needs to store and estimate one entry for each state (state/action combination). 
• Issues and possible solutions

• Too many entries to store    → lossy compression
• Many combinations are rarely seen   → generalize to unseen entries

• Idea: Estimate the state value by learning an approximation function �𝑈𝑈 𝑠𝑠 = ℎ𝜽𝜽 𝑠𝑠  based on features of 𝑠𝑠 (ML).

• Example: 4x3 Grid World with a linear combination of state features (𝑥𝑥,𝑦𝑦) and learn 𝜽𝜽 from observed data.

�𝑈𝑈𝜽𝜽 𝑥𝑥,𝑦𝑦 = 𝜃𝜃0 + 𝜃𝜃1𝑥𝑥 + 𝜃𝜃2𝑦𝑦

𝜽𝜽 = (𝜃𝜃0,𝜃𝜃1,𝜃𝜃2) can be updated 
iteratively after each new observed 
reward using gradient descent.

Value function 𝑈𝑈 𝑠𝑠
Stored as a table

𝑥𝑥

𝑦𝑦
Example: Linear approximation 

using state features (𝑥𝑥, 𝑦𝑦)

Table vs. approximate 𝑈𝑈(𝑠𝑠) 



Traditional Tabular Q-Learning

target prediction

𝑠𝑠 𝑎𝑎 𝑄𝑄(𝑠𝑠,𝑎𝑎)
1 1 0.7

1 2 0.3

… … …

Q-Table

𝑠𝑠 𝑄𝑄(𝑠𝑠, 𝑎𝑎)

Q-Table as a Deep 
Q-Network (DQN)

𝑠𝑠 𝑄𝑄(𝑠𝑠, 𝑎𝑎)

𝑆𝑆 𝐴𝐴

Deep Q-Learning Target networks: It turns out that the Q-Network is unstable if the 
same network is used to estimate 𝑄𝑄(𝑠𝑠, 𝑎𝑎) and also 𝑄𝑄(𝑠𝑠′, 𝑎𝑎′). Deep Q-
Learning uses a second target network for 𝑄𝑄 𝑠𝑠′, 𝑎𝑎′  that is updated 
with the prediction network every 𝐶𝐶 steps. 

Experience replay:  To reduce instability more, generate actions using 
the current network and store the experience 𝑠𝑠, 𝑎𝑎, 𝑟𝑟, 𝑠𝑠′  in a table. 
Regularly use samples from the table to update the networks..

Loss function: squared difference between prediction and target.

Volodymyr Mni et al., Playing Atari with Deep Reinforcement Learning, NIPS Deep Learning Workshop 2013.

https://doi.org/10.48550/arXiv.1312.5602


Summary

• Agents can learn the value of being in a state from 
reward signals.

• Rewards can be delayed (e.g., at the end of a game).

• Unknown transition models lead to the need for 
exploration by trying actions (model-free methods 
such as Q-Learning).

• All RL problems are computationally very expensive 
and often can only be solved by approximation. The 
state-of-the-art approach is to use deep artificial 
neural networks for function approximation. 

• Not covered here: Not being able to fully observe the 
state makes the problem more difficult and leads to 
Partially Observable MDPs.
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