
Online Material

CS 5/7320
Artificial Intelligence

Reinforcement Learning
AIMA Chapter 17+22

Slides by Michael Hahsler
with figures from the AIMA textbook.

This work is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

From Chapter 2:
Agents That Learn

Positive feedback from the critic, called “reward,” reinforces the performance element.

Reinforcement Learning: How do we learn a good performance element from rewards using trial-and-error?

Critic: How is the agent currently
performing?

Learning Element: Improves the
performance element and changes

how it selects actions.
E.g., adding rules, changing weights

Problem generators: Explore new
actions.

reward

Making Complex Decisions:
Sequential Decision Making

AIMA Chapter 17

Remember Chapter 16:
Making Simple Decisions

For a decision that we make frequently and making it once does
not affect the future decisions (episodic environment), we can
use the Principle of Maximum Expected Utility (MEU).
Given the expected utility of an action

𝐸𝐸𝐸𝐸 𝑎𝑎 = �
𝑠𝑠𝑠

�
𝑠𝑠

𝑃𝑃 𝑠𝑠 𝑃𝑃(𝑠𝑠′|𝑠𝑠, 𝑎𝑎)𝑈𝑈(𝑠𝑠′)

choose action that maximizes the expected utility:

𝑎𝑎∗ = argmax𝑎𝑎 𝐸𝐸𝑈𝑈(𝑎𝑎)

Now we will talk about sequential decision making.

ActionCurrent
state 𝒔𝒔

Future
state 𝒔𝒔𝒔

Action 𝑎𝑎 𝑼𝑼(𝒔𝒔𝒔)

𝑃𝑃 𝑠𝑠 … Uncertainty about current state (= partial observability)
𝑃𝑃(𝑠𝑠′|𝑠𝑠, 𝑎𝑎) … Stochastic transition function (= non deterministic actions).
𝑈𝑈(𝑠𝑠′) … cardinal utility function.

Sequential Decision Problems

• Utility-based agent: The agent’s utility depends on a sequence of decisions that depend on each other.
• Sequential decision problems incorporate utility (called immediate and long-term reward), uncertainty, and

sensing.

Environment
𝒔𝒔𝒕𝒕 → 𝒔𝒔𝒕𝒕+𝟏𝟏

Agent

Action
𝑎𝑎𝑡𝑡

Observation
𝑜𝑜𝑡𝑡+1

Reward
𝑟𝑟𝑡𝑡+1

Goal: Observations and rewards depend on the
state of the system, and the agent wants to
maximize the expected discounted reward:

𝑈𝑈 = 𝔼𝔼 �
𝑡𝑡=0

𝑇𝑇

𝛾𝛾𝑡𝑡𝑅𝑅𝑡𝑡

𝑅𝑅𝑡𝑡… reward at time 𝑡𝑡 as a random variable
𝛾𝛾 … discounting factor
𝑇𝑇 … time horizon may be infinity

Current
state 𝒔𝒔𝟎𝟎

𝒔𝒔𝟏𝟏
𝑎𝑎0

𝒔𝒔𝑻𝑻−𝟏𝟏 𝒔𝒔𝑻𝑻

𝑼𝑼(𝒔𝒔𝑻𝑻)𝑈𝑈(𝑠𝑠𝑻𝑻−1)𝑼𝑼(𝒔𝒔𝟏𝟏) …
𝑎𝑎1 𝑎𝑎𝑇𝑇−1

Sequence: (𝑜𝑜0, 𝑟𝑟0),𝑎𝑎0, (𝑜𝑜1, 𝑟𝑟1),𝑎𝑎1, (𝑜𝑜2, 𝑟𝑟2),𝑎𝑎2, …

𝑠𝑠0 𝑠𝑠1 𝑠𝑠2

If we have a model of the
environment, then we can plan.

An Environment Model:
Markov Decision Process (MDP)
MDPs are discrete-time stochastic control processes defined by:

• a finite set of states 𝒮𝒮 = {𝑠𝑠0, 𝑠𝑠1, 𝑠𝑠2, … } (initial state 𝑠𝑠0)
• a set of available actions 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑠𝑠) in each state 𝑠𝑠
• a transition model 𝑃𝑃(𝑠𝑠′ | 𝑠𝑠, 𝑎𝑎) where 𝑎𝑎 ∈ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑠𝑠)
• a reward function 𝑟𝑟(𝑠𝑠) where the immediate reward depends on the current

state (often 𝑟𝑟(𝑠𝑠, 𝑎𝑎, 𝑠𝑠’) is used to make modelling easier)

MDPs model sequential decision problems with
• a fully observable, stochastic, and known environment;
• a Markovian transition model (i.e., future states do not depend on past states

given the current state);
• additive immediate rewards.

Time horizon
• Infinite horizon: non-episodic (continuous) tasks with no terminal state.
• Finite horizon: episodic tasks. Episode ends after a number of periods or when

a terminal state is reached. Episodes contain a sequence of several actions that
affect each other.

𝑠𝑠0 𝑠𝑠1

𝑠𝑠2

𝑎𝑎11
10

𝑎𝑎2
𝑎𝑎1

𝑎𝑎2

.5

.5

1
10-5

100

𝑎𝑎1,𝑎𝑎2

0

𝑷𝑷 𝒔𝒔𝒔 𝒔𝒔,𝒂𝒂)
𝒓𝒓(𝒔𝒔,𝒂𝒂, 𝒔𝒔’)

Example: 4x3 Grid World
Since we know the complete
MDP model, we can solve
this as a planning problem.
For each square: specify
what direction should we try
to go to maximize the
expected total utility.
This is called a policy written
as the function

𝜋𝜋: 𝑆𝑆 → 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑆𝑆)

-0.04-0.04-0.04

-0.04 -0.04

-0.04
-0.04 -0.04 -0.04

Policy as a Table
𝑠𝑠 Action 𝝅𝝅(𝐬𝐬)

(1,1) Up

… …

… …

Rewards 𝑟𝑟(𝑠𝑠)
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑠𝑠)

States 𝑆𝑆 are
squares.

START is the
initial state

Stochastic
transition model
𝑃𝑃(𝑠𝑠𝑠 | 𝑠𝑠, 𝑎𝑎)

Value Function
• A policy 𝝅𝝅 = 𝜋𝜋 𝑠𝑠0 ,𝜋𝜋 𝑠𝑠1 , … defines for each state which action to take.
• The expected utility of being in state 𝑠𝑠 under policy 𝜋𝜋 (i.e., following the policy starting

from 𝑠𝑠) can be calculated as the sum of the immediate rewards over the visited sequence
of states:

𝑈𝑈𝜋𝜋 𝑠𝑠 = 𝔼𝔼𝜋𝜋 �
𝑡𝑡=0

∞

𝛾𝛾𝑡𝑡𝑟𝑟(𝑠𝑠𝑡𝑡) |𝑠𝑠0 = 𝑠𝑠

• 𝑈𝑈𝜋𝜋(𝑠𝑠) (also often written as 𝑉𝑉(𝑠𝑠)) is called the value function. It is stored as a table.

𝛾𝛾 .. Discounting factor to
give more weight to
immediate rewards.

𝔼𝔼𝜋𝜋 … Expectation over
sequences that can be
created by following 𝜋𝜋.

𝑟𝑟(𝑠𝑠) .. Reward function.
Value Function
𝑠𝑠 State Value 𝑽𝑽(𝐬𝐬)

(1,1) 0.7453

(1,2) 0.8016

… …

Value Function

Planning: Finding the Optimal Policy
• The goal of solving an MDP is to find an optimal policy 𝝅𝝅 that maximizes the expected future utility for each

state

 𝜋𝜋∗ 𝑠𝑠 = argmax
𝜋𝜋

𝑈𝑈𝜋𝜋 𝑠𝑠 for all 𝑠𝑠 ∈ 𝒮𝒮

• Issue: 𝜋𝜋∗ depends on 𝑈𝑈𝜋𝜋 and vice versa!

• The problem can be formulated recursively using the Bellman equation which holds for the optimal value
function 𝑈𝑈 (“Bellman optimality condition”):

𝑈𝑈𝜋𝜋∗ 𝑠𝑠 = 𝑟𝑟 𝑠𝑠 + 𝛾𝛾max
𝑎𝑎∈𝐴𝐴

�
𝑠𝑠′

𝑃𝑃 𝑠𝑠′ 𝑠𝑠, 𝑎𝑎 𝑈𝑈𝜋𝜋∗ 𝑠𝑠′

𝜋𝜋∗ uses the
best action

ExpectationImmediate
Reward

Utility of the next state

Example Solution: 4x3 Grid World
Optimal action in each state

(policy 𝝅𝝅∗) Greedy policy:
Always pick the action

leading to the state with
the highest expected utility.

It is optimal to walk away from the +1 square to avoid the -1 square!

Value of being in a state 𝑼𝑼𝝅𝝅∗(𝒔𝒔)
(given that we will follow 𝝅𝝅∗)

𝛾𝛾 = 1

How do we find the optimal value function/optimal policy?

Policy Iteration Value Iteration

Q-Function
• 𝑄𝑄(𝑠𝑠,𝑎𝑎) is called the state-action value function. It gives the expected

utility of taking action 𝑎𝑎 in state 𝑠𝑠 and then following the policy.

𝑄𝑄 𝑠𝑠, 𝑎𝑎 = 𝑟𝑟 𝑠𝑠 + 𝛾𝛾�
𝑠𝑠𝑠

 𝑃𝑃 𝑠𝑠′ 𝑠𝑠,𝑎𝑎 𝑈𝑈(𝑠𝑠′)

• The Relationship with the state value function: 𝑈𝑈 𝑠𝑠 = max
𝑎𝑎∈𝐴𝐴(𝑠𝑠)

𝑄𝑄 𝑠𝑠, 𝑎𝑎

• The Q-function lets us compare the value of taking different action is
a given state. It is used in algorithms to determine what action is the
best.

Immediate
Reward

Expected utility of the
next state Q-Table

𝑠𝑠 𝑎𝑎 𝑄𝑄(𝑠𝑠, 𝑎𝑎)

(1,1) Up 0.7453

(1,1) Right 0.6709

(1,1) Down 0.7003

(1,1) Left 0.7109

… … …

Value Function

𝑈𝑈 converges to 𝑈𝑈𝜋𝜋∗
and we can extract 𝜋𝜋∗

Value Iteration: Estimate the Optimal Value Function 𝑈𝑈𝜋𝜋∗

Algorithm: Start with a 𝑈𝑈 table (vector) of 0 for all states and then apply the Bellman update over the entries
of the table until it converges to the unique optimal solution 𝑈𝑈𝜋𝜋∗ .

Bellman update: Value of
the best action in state s.

Convergence? Uses a proxy for policy loss
𝑈𝑈𝜋𝜋 − 𝑈𝑈 ∞ as the stopping criterion

𝑈𝑈𝜋𝜋∗𝑈𝑈 𝑈𝑈𝑈

Bellman updates

Extract
 greedy 𝜋𝜋∗

Sweep over
the 𝑈𝑈 table

Guarantee: It will
converge because the
optimal solution is a fixed
point of the Bellam
operator.

𝜋𝜋 converges to 𝜋𝜋∗
(and 𝑈𝑈 converges to 𝑈𝑈𝜋𝜋∗)

Policy Iteration: Find the Optimal Policy 𝜋𝜋∗

Estimate 𝑈𝑈 given the current
policy (either solve an LP or

value iteration with fixed policy)

Greedy policy
Improvement.

Policy iteration tries to directly find the optimal policy by iterating policy evaluation and improvement.

𝑈𝑈𝜋𝜋∗

𝑈𝑈

𝜋𝜋∗

𝜋𝜋

Convergence test

Guarantee: It will
converge because each
step improves the
utility/policy and there is a
finite number of steps.

Find the Optimal Policy for Tic-Tac-Toe
Definitions from Chapter 5 on Games for a goal-based agent:

𝑠𝑠0 Empty board.
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑠𝑠) Play empty squares.
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑠𝑠, 𝑎𝑎) Symbol (x/o) is placed on empty square.
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑠𝑠) Did a player win or is the game a draw?
𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈(𝑠𝑠) +1 if x wins, -1 if o wins and 0 for a draw.
 Utility is only defined for terminal states.

Reward function 𝑟𝑟(𝑠𝑠)

Stochastic transition model 𝑃𝑃 𝑠𝑠′ 𝑠𝑠,𝑎𝑎

Implementation as a planning agent:
1. Model the environment as an MDP. It is completely described by the rules of the game.
2. Plan the optimal policy 𝜋𝜋∗ 𝑠𝑠 for each state (e.g., using value iteration).
3. Executed the policy.

Potential issues:
• There are many states, so the state value table 𝑈𝑈 𝑠𝑠 has many entries.
• The stochastic transition model 𝑃𝑃 𝑠𝑠′ 𝑠𝑠,𝑎𝑎 needs to be known. We need to assume the other player’s policy.
• The tables (value function, policy) are very large. This does not scale for more complicated games (e.g., Connect-4).
• For games, all the rewards are delayed. Immediate rewards are always 0 until the end of the game.

This makes planning hard! An alternative solution is to use online learning with model-free reinforcement learning methods.

(Model-Free) Reinforcement Learning
AIMA Chapter 22

Model-based vs. Model-free Reinforcement Learning (RL)

Agent

Action
𝑎𝑎𝑡𝑡

Observation
𝑜𝑜𝑡𝑡+1

Reward
𝑟𝑟𝑡𝑡+1

 Environment
𝒔𝒔𝒕𝒕 → 𝒔𝒔𝒕𝒕+𝟏𝟏

Model-based RL

𝑠𝑠0 𝑠𝑠1

𝑠𝑠2

𝑎𝑎11
10

𝑎𝑎2
𝑎𝑎1

𝑎𝑎2

.5

.5

1
10-5

100

𝑎𝑎1, 𝑎𝑎2

0

𝑷𝑷 𝒔𝒔𝒔 𝒔𝒔,𝒂𝒂)
𝒓𝒓(𝒔𝒔,𝒂𝒂, 𝒔𝒔’)

MDP

Environment
𝒔𝒔𝒕𝒕 → 𝒔𝒔𝒕𝒕+𝟏𝟏

Agent

Action
𝑎𝑎𝑡𝑡

Observation
𝑜𝑜𝑡𝑡+1

Reward
𝑟𝑟𝑡𝑡+1

Model-free RL

?
MDP

Use the MDP model for planning
(e.g., value iteration, policy iteration)

An unknown MDP model means we have
to try actions and use online learning.

Reinforcement Learning (RL)

• RL assumes that the problem can be modeled as a Markov Decision Process
(MDP).

• However, we do not know the transition or the reward model. This means we
have an unknown environment, and we need “model-free” methods.

• We cannot use offline planning in unknown environments. The agent needs to
explore the environment (try actions) and use the reward signal to update its
estimate of the utility of states and actions. This is an online learning process
that provides positive reinforcement through rewards.

• A popular algorithm is Q-Learning, which tries to learn the state-action value
function of important states.

Q-Learning
Q-Learning learns the state-action value function as a
table from interactions with the environment.

Behavior policy: 𝑓𝑓(⋅) is the exploration function and decides on
the next action. As 𝑁𝑁 increases, it can exploit good actions more.

Make 𝑄𝑄 𝑠𝑠,𝑎𝑎 a little more similar to the received
reward + the best Q-value of the successor state.

A new episode
starts with no
previous state. Learning rate

Q-Table

𝑠𝑠 𝑎𝑎 𝑄𝑄(𝑠𝑠, 𝑎𝑎)

TD-error

Encodes learned policy

𝜋𝜋 𝑠𝑠 = argmax
𝑎𝑎∈𝐴𝐴(𝑠𝑠)

𝑄𝑄 𝑠𝑠,𝑎𝑎

Tabular Methods vs. Value Function Approximation
• 𝑈𝑈 (or 𝑄𝑄) tables needs to store and estimate one entry for each state (state/action combination).
• Issues and possible solutions

• Too many entries to store → lossy compression
• Many combinations are rarely seen → generalize to unseen entries

• Idea: Estimate the state value by learning an approximation function �𝑈𝑈 𝑠𝑠 = ℎ𝜽𝜽 𝑠𝑠 based on features of 𝑠𝑠 (ML).

• Example: 4x3 Grid World with a linear combination of state features (𝑥𝑥,𝑦𝑦) and learn 𝜽𝜽 from observed data.

�𝑈𝑈𝜽𝜽 𝑥𝑥,𝑦𝑦 = 𝜃𝜃0 + 𝜃𝜃1𝑥𝑥 + 𝜃𝜃2𝑦𝑦

𝜽𝜽 = (𝜃𝜃0,𝜃𝜃1,𝜃𝜃2) can be updated
iteratively after each new observed
reward using gradient descent.

Value function 𝑈𝑈 𝑠𝑠
Stored as a table

𝑥𝑥

𝑦𝑦
Example: Linear approximation

using state features (𝑥𝑥, 𝑦𝑦)

Table vs. approximate 𝑈𝑈(𝑠𝑠)

Traditional Tabular Q-Learning

target prediction

𝑠𝑠 𝑎𝑎 𝑄𝑄(𝑠𝑠,𝑎𝑎)
1 1 0.7

1 2 0.3

… … …

Q-Table

𝑠𝑠 𝑄𝑄(𝑠𝑠, 𝑎𝑎)

Q-Table as a Deep
Q-Network (DQN)

𝑠𝑠 𝑄𝑄(𝑠𝑠, 𝑎𝑎)

𝑆𝑆 𝐴𝐴

Deep Q-Learning Target networks: It turns out that the Q-Network is unstable if the
same network is used to estimate 𝑄𝑄(𝑠𝑠, 𝑎𝑎) and also 𝑄𝑄(𝑠𝑠′, 𝑎𝑎′). Deep Q-
Learning uses a second target network for 𝑄𝑄 𝑠𝑠′, 𝑎𝑎′ that is updated
with the prediction network every 𝐶𝐶 steps.

Experience replay: To reduce instability more, generate actions using
the current network and store the experience 𝑠𝑠, 𝑎𝑎, 𝑟𝑟, 𝑠𝑠′ in a table.
Regularly use samples from the table to update the networks..

Loss function: squared difference between prediction and target.

Volodymyr Mni et al., Playing Atari with Deep Reinforcement Learning, NIPS Deep Learning Workshop 2013.

https://doi.org/10.48550/arXiv.1312.5602

Summary

• Agents can learn the value of being in a state from
reward signals.

• Rewards can be delayed (e.g., at the end of a game).

• Unknown transition models lead to the need for
exploration by trying actions (model-free methods
such as Q-Learning).

• All RL problems are computationally very expensive
and often can only be solved by approximation. The
state-of-the-art approach is to use deep artificial
neural networks for function approximation.

• Not covered here: Not being able to fully observe the
state makes the problem more difficult and leads to
Partially Observable MDPs.

	CS 5/7320 �Artificial Intelligence��Reinforcement Learning�AIMA Chapter 17+22
	From Chapter 2: �Agents That Learn
	Making Complex Decisions:�Sequential Decision Making
	Remember Chapter 16: �Making Simple Decisions
	Sequential Decision Problems
	An Environment Model: �Markov Decision Process (MDP)
	Example: 4x3 Grid World
	Value Function
	Planning: Finding the Optimal Policy
	Example Solution: 4x3 Grid World
	Q-Function
	Value Iteration: Estimate the Optimal Value Function 𝑈 𝜋 ∗
	Policy Iteration: Find the Optimal Policy 𝜋 ∗
	Find the Optimal Policy for Tic-Tac-Toe
	(Model-Free) Reinforcement Learning
	Model-based vs. Model-free Reinforcement Learning (RL)
	Reinforcement Learning (RL)
	Q-Learning
	Tabular Methods vs. Value Function Approximation
	Deep Q-Learning
	Summary

