
Introduction to
Data Mining

Chapter 3
Classification –
Basic Concepts

by Michael Hahsler

Based in Slides by Tan,
Steinbach, Karpatne, Kumar

R Code Examples

Available R Code examples are indicated
on slides by the R logo

 The Examples are available at
https://mhahsler.github.io/Introduction_to_Data_Mining_R_Examples/

https://mhahsler.github.io/Introduction_to_Data_Mining_R_Examples/
https://mhahsler.github.io/Introduction_to_Data_Mining_R_Examples/

Topics

 Introduction
 Decision Trees

—Overview
—Tree Induction

 Overfitting and other Practical Issues
 Model Selection and Evaluation

—Metrics for Performance Evaluation
—Methods to Obtain Reliable Estimates
—Model Comparison (Relative Performance)

 Feature Selection

Supervised Learning – Learning from Examples

 Examples
—Input-output pairs : E = 𝑥𝑥1,𝑦𝑦1 , … , 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 , … , 𝑥𝑥𝑁𝑁,𝑦𝑦𝑁𝑁 .
—We assume that the examples are produced iid (with noise and errors) from a

target function 𝑦𝑦 = 𝑓𝑓(𝑥𝑥).

 Learning problem
—Given a hypothesis space H
—Find a hypothesis ℎ ∈ 𝐻𝐻 such that �𝑦𝑦𝑖𝑖 = ℎ(𝑥𝑥𝑖𝑖) ≈ 𝑦𝑦𝑖𝑖
—That is, we want to approximate 𝑓𝑓 by ℎ using E.

 Includes
—Regres s ion (outputs = real numbers). Goal: Predict the number accurately.

E.g., x is a house and 𝑓𝑓(𝑥𝑥) is its selling price.
—Clas s ification (outputs = class labels). Goal: Assign new records to a class.

E.g., 𝑥𝑥 is an email and 𝑓𝑓(𝑥𝑥) is spam / ham

𝑓𝑓

You already know linear regression. We focus on Classification.

𝑓𝑓

Illustrating Classification Task

𝑦𝑦 = ℎ(𝑥𝑥)

yxE

Examples of
Classification Task

 Predicting tumor cells as benign or
malignant.

 Classifying credit card transactions
as legitimate or fraudulent.

 Categorizing news stories
as finance, weather, entertainment,
sports, etc.

Topics

 Introduction
 Decis ion Trees

—Overview
—Tree Induction

 Overfitting and other Practical Issues
 Model Selection and Evaluation

—Metrics for Performance Evaluation
—Methods to Obtain Reliable Estimates
—Model Comparison (Relative Performance)

 Feature Selection

Example of a Decision Tree

Tid

Refund Marital

Status

Taxable

Income Cheat

1 Yes Single 125K No
2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10

Re fund

MarSt

TaxInc

YESNO

NO

NO

Yes No

Married Single, Divorced

< 80K > 80K

Splitting Attributes

Tra ining Data Model: Decis ion Tree

Learn

		Tid

		Refund

		Marital

Status

		Taxable

Income

		Cheat

		1

		Yes

		Single

		125K

		No

		2

		No

		Married

		100K

		No

		3

		No

		Single

		70K

		No

		4

		Yes

		Married

		120K

		No

		5

		No

		Divorced

		95K

		Yes

		6

		No

		Married

		60K

		No

		7

		Yes

		Divorced

		220K

		No

		8

		No

		Single

		85K

		Yes

		9

		No

		Married

		75K

		No

		10

		No

		Single

		90K

		Yes

10

Another Example of Decision Tree

Tid Refund Marital
Status

Taxable
Income Cheat

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10

MarSt

Refund

TaxInc

YESNO

NO

NO

Yes No

Married
Single,

Divorced

< 80K > 80K

There could be more than one tree that
fits the s ame data!

Learn

Decision Tree: Deduction

Decision
Tree

Apply Model to Test Data

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

Married Single, Divorced

< 80K > 80K

Refund Marital
Status

Taxable
Income Cheat

No Married 80K ?
10

Tes t Data
Start from the root of tree.

Apply Model to Test Data

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

Married Single, Divorced

< 80K > 80K

Refund Marital
Status

Taxable
Income Cheat

No Married 80K ?
10

Tes t Data

Apply Model to Test Data

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

Married Single, Divorced

< 80K > 80K

Refund Marital
Status

Taxable
Income Cheat

No Married 80K ?
10

Tes t Data

Apply Model to Test Data

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

Married Single, Divorced

< 80K > 80K

Refund Marital
Status

Taxable
Income Cheat

No Married 80K ?
10

Tes t Data

Apply Model to Test Data

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

Married Single, Divorced

< 80K > 80K

Refund Marital
Status

Taxable
Income Cheat

No Married 80K ?
10

Tes t Data

Apply Model to Test Data

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

Married Single, Divorced

< 80K > 80K

Refund Marital
Status

Taxable
Income Cheat

No Married 80K ?
10

Tes t Data

Assign Cheat to “No”

Topics

 Introduction
 Decision Trees

—Overview
—Tree Induction

 Overfitting and other Practical Issues
 Model Selection and Evaluation

—Metrics for Performance Evaluation
—Methods to Obtain Reliable Estimates
—Model Comparison (Relative Performance)

 Feature Selection

Decision Tree: Induction

Decision
Tree

Decision Tree Induction

Many Algorithms:
—Hunt’s Algorithm (one of the earliest)
—CART (Classification And Regression Tree)
—ID3, C4.5, C5.0 (by Ross Quinlan, introduced information gain)
—CHAID (CHi-squared Automatic Interaction Detection)
—MARS (Improvement for numerical features)
—SLIQ, SPRINT
—Conditional Inference Trees (recursive partitioning using statistical tests)

All algorithms use a s imple, greedy top-down splitting strategy!

The Effect of a Split

Refund

Don’t
Cheat

mixed

Yes No

Tid Refund Marital

Status

Taxable

Income Cheat

1 Yes Single 125K No
2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10

Tid Refund Marital

Status

Taxable

Income Cheat

1 Yes Single 125K No
2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10

Tid Refund Marital

Status

Taxable

Income Cheat

1 Yes Single 125K No
2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10

Every split partitions the data set into two subsets.

No:
3
Yes:
0

No:
4
Yes:
3

		Tid

		Refund

		Marital

Status

		Taxable

Income

		Cheat

		1

		Yes

		Single

		125K

		No

		2

		No

		Married

		100K

		No

		3

		No

		Single

		70K

		No

		4

		Yes

		Married

		120K

		No

		5

		No

		Divorced

		95K

		Yes

		6

		No

		Married

		60K

		No

		7

		Yes

		Divorced

		220K

		No

		8

		No

		Single

		85K

		Yes

		9

		No

		Married

		75K

		No

		10

		No

		Single

		90K

		Yes

10

		Tid

		Refund

		Marital

Status

		Taxable

Income

		Cheat

		1

		Yes

		Single

		125K

		No

		2

		No

		Married

		100K

		No

		3

		No

		Single

		70K

		No

		4

		Yes

		Married

		120K

		No

		5

		No

		Divorced

		95K

		Yes

		6

		No

		Married

		60K

		No

		7

		Yes

		Divorced

		220K

		No

		8

		No

		Single

		85K

		Yes

		9

		No

		Married

		75K

		No

		10

		No

		Single

		90K

		Yes

10

		Tid

		Refund

		Marital

Status

		Taxable

Income

		Cheat

		1

		Yes

		Single

		125K

		No

		2

		No

		Married

		100K

		No

		3

		No

		Single

		70K

		No

		4

		Yes

		Married

		120K

		No

		5

		No

		Divorced

		95K

		Yes

		6

		No

		Married

		60K

		No

		7

		Yes

		Divorced

		220K

		No

		8

		No

		Single

		85K

		Yes

		9

		No

		Married

		75K

		No

		10

		No

		Single

		90K

		Yes

10

Hunt’s Algorithm

mixed
Refund

Don’t
Cheat

mixed

Yes No

Refund

Don’t
Cheat

Yes No

Marital
Status

Don’t
Cheat

Cheat

Single,
Divorced Married

Taxable
Income

Don’t
Cheat

< 80K >= 80K

Refund

Don’t
Cheat

Yes No

Marital
Status

Don’t
Cheat

mixed

Single,
Divorced Married

Tid Refund Marital

Status

Taxable

Income Cheat

1 Yes Single 125K No
2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10

"Use attributes to split the data recursively,
till each split contains only a s ingle class."

		Tid

		Refund

		Marital

Status

		Taxable

Income

		Cheat

		1

		Yes

		Single

		125K

		No

		2

		No

		Married

		100K

		No

		3

		No

		Single

		70K

		No

		4

		Yes

		Married

		120K

		No

		5

		No

		Divorced

		95K

		Yes

		6

		No

		Married

		60K

		No

		7

		Yes

		Divorced

		220K

		No

		8

		No

		Single

		85K

		Yes

		9

		No

		Married

		75K

		No

		10

		No

		Single

		90K

		Yes

10

Example: Creating a Decision Tree

x1

x2

o
o

o
o

o o

o

o
o

x x x
x

x
x

x

x

0

2.5

X2 < 2.5

Blue circle Mixed

Yes No

Decision trees can only cut parallel to an axis!

Example: Creating a Decision Tree

x1

x2

o
o

o
o

o o

o

o
o

x x x
x

x
x

x

x

0

2.5

2

o
o

x

2

X2 < 2.5

Blue circle X1 < 2

Blue circle Red X

Yes No

Yes No

Tree Induction

Greedy strategy
—Split the records based on an attribute test that optimizes a certain

criterion.

 Issues Refund

Don’t
Cheat

Yes No

Marital
Status

Don’t
Cheat

mixed

Single,
Divorced Married

Taxable
Income

Don’t
Cheat

< 80K >= 80K
Determine when to

stop splitting.

How to determine the
best split variable?

Order?

Determine how to
split the records
using different
attribute types.

Tree Induction

Greedy strategy
—Split the records based on an attribute test that optimizes a certain

criterion.

 Issues
—Determine how to split the records us ing diffe rent a ttribute types .
—How to determine the best split variable?
—Determine when to stop splitting.

How to Specify Test Condition?

Depends on attribute types
—Nominal
—Ordinal
—Continuous (interval/ratio)

Splitting Based on Nominal Attributes

Divide the unordered values into two subsets.
We need to find optimal partitioning.

CarType
{Family,
Luxury} {Sports}

CarType
{Sports,
Luxury} {Family} OR

CarType
{Family,
Sports} {Luxury}

Best decision depends on what we want to predict!

Splitting Based on Ordinal Attributes

Divide the ordered values into two subsets.

What about this split?

Size
{Medium,

Large} {Small}
Size

{Small,
Medium} {Large} OR

Size
{Small,
Large} {Medium}

Splitting Based on Continuous Attributes
Binary split Multi-way split

Discretization to form an ordinal categorical attribute:
• Static – discretize the data set once at the beginning (equal

interval, equal frequency, etc.).
• Dynamic – discretize during the tree construction.

• Example: For a binary decision (𝐴𝐴 < 𝑣𝑣) or (𝐴𝐴 ≥ 𝑣𝑣) consider all possible
splits and finds the best cut. This can be done efficiently.

Tree Induction

Greedy strategy
—Split the records based on an attribute test that optimizes a certain

criterion.

 Issues
—Determine how to split the records using different attribute types.
—How to de termine the bes t split variable?
—Determine when to stop splitting

How to determine the Best Split

Before Splitting: 10 records of c las s 0,
 10 records of c las s 1

Which splitting variable is the bes t?

C0: 10
C1: 10

Determine the Quality of a Node:
Node Impurity

 Nodes represent a subset of data that satisfy the splitting condition.
We want to create nodes with homogeneous class distributions.
 Need a measure of node impurity:

Non-homogeneous ,
High degree of impurity

C0: 5
C1: 5

Homogeneous ,
Low degree of impurity

C0: 9
C1: 1

This is preferred

General rule for measures of impurity:
—Smaller is better.
—0 represents the complete purity.

Find the Best Split: General Framework
Before Splitting:

Attribute A

Yes No

Node N1 Node N2
C0 N10
C1 N11

C0 N20
C1 N21

C0 N00
C1 N01

M0

M1 M2

Attribute B

Yes No

Node N3 Node N4
C0 N30
C1 N31

C0 N40
C1 N41

M3 M4

MB

We look at the improvement called the gain:
Gain = M0 – MA vs . M0 – MB → Choose best split

Assume we have a measure M that tells us how "pure" a node is.

MA

Aggregate the purity
measure of the child
nodes into a s ingle

number.

Measures of Node Impurity

Gini Index Entropy Classification
error

Measure of Impurity: Gini Index of a Node
 Gini Index for a given node t :

 𝑝𝑝(𝑗𝑗 | 𝑡𝑡) is estimated as the relative frequency of class j at node t

 Origin: The Gini index is a measure of statistical dispersion intended to represent the income
inequality within nations. Here it is used as a statistical measure that quantifies how mixed
or impure the class distribution in a node is.

 Maximum Impurity: 1 – 1/𝑛𝑛𝑐𝑐 (number of classes) when records are equally distributed
among all classes. For a binary decis ion it is 0.5.

 Minimum Impurity: 0 when all records belong to one class.

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑡𝑡 = �
𝑗𝑗

𝑝𝑝 𝑗𝑗 𝑡𝑡)(1 − 𝑝𝑝 𝑗𝑗 𝑡𝑡)) = 1 −�
𝑗𝑗

𝑝𝑝 𝑗𝑗 𝑡𝑡)2

C1 0
C2 6

Gini=0.000

C1 2
C2 4

Gini=0.444

C1 3
C2 3

Gini=0.500

C1 1
C2 5

Gini=0.278

 Examples

Examples: Gini Index of a Node

C1 0
C2 6

C1 2
C2 4

C1 1
C2 5

P(C1) = 0/6 = 0 P(C2) = 6/6 = 1

Gini = 1 – P(C1)2 – P(C2)2 = 1 – 0 – 1 = 0

P(C1) = 1/6 P(C2) = 5/6

Gini = 1 – (1/6)2 – (5/6)2 = 0.278

P(C1) = 2/6 P(C2) = 4/6

Gini = 1 – (2/6)2 – (4/6)2 = 0.444

Maximal impurity here is ½ = .5

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑡𝑡 = 1 −�
𝑗𝑗

𝑝𝑝 𝑗𝑗 𝑡𝑡)2

Splitting Based on the Gini Index
When a node 𝑝𝑝 is split into 𝑘𝑘 partitions (children), the quality of the split is
computed as a weighted:

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑝𝑝) − 𝑛𝑛

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(1) − 𝑛𝑛1 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(2) − 𝑛𝑛2 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑘𝑘) − 𝑛𝑛𝑘𝑘
...

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠 = �
𝑖𝑖

𝑘𝑘 𝑛𝑛𝑖𝑖
𝑛𝑛
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑖𝑖)

where 𝑛𝑛𝑖𝑖 is the number of records at child 𝑖𝑖, and 𝑛𝑛 is the number of records at
node 𝑝𝑝.

Used in the algorithms CART, SLIQ, SPRINT.

Example: Splitting based on the Gini Index

 Effect of weighing partitions: Larger and purer partitions are
preferred.

B?

Yes No

Node N1 Node N2

 Parent

C1 6

C2 6

Gini = 0.5

 N1 N2

C1 5 1

C2 3 3

Gini 0.469 0.375

Gini(N1) = 1 – (5/8)2 – (3/8)2 = 0.469

Gini(N2) = 1 – (1/4)2 – (3/4)2 = 0.375

Gini of the split
 = 8/12 * 0.469 +
 4/12 * 0.375
 = 0.438

Gain = 0.5 – 0.438
 = 0.062

GINI improves !

		

		Parent

		C1

		6

		C2

		6

		Gini = 0.5

		

		N1

		N2

		C1

		5

		1

		C2

		3

		3

		Gini

		0.469

		0.375

Continuous Attributes: Computing Gini Index
 How does the algorithm choose the splitting

value 𝑣𝑣? (= dynamic discretization)
—Number of possible splitting values

= Number of distinct values

 Efficient Method: for each attribute,
—Sort the attribute on values
—Linearly scan these values, each time updating

the count matrix and computing Gini index
—Choose the split position that has the smallest

Gini index

𝑣𝑣 = 97𝐾𝐾
Cheat No No No Yes Yes Yes No No No No

Taxable Income

60 70 75 85 90 95 100 120 125 220

55 65 72 80 87 92 97 110 122 172 230
<= > <= > <= > <= > <= > <= > <= > <= > <= > <= > <= >

Yes 0 3 0 3 0 3 0 3 1 2 2 1 3 0 3 0 3 0 3 0 3 0

No 0 7 1 6 2 5 3 4 3 4 3 4 3 4 4 3 5 2 6 1 7 0

Gini 0.420 0.400 0.375 0.343 0.417 0.400 0.300 0.343 0.375 0.400 0.420

Split Pos itions
Sorted Values

Taxabl
e

income
 > 97K

Yes No

Measures of Node Impurity

Gini Index Entropy Classification
error

Measure of Impurity: Entropy

 Entropy at a given node t:

𝑝𝑝(𝑗𝑗 | 𝑡𝑡) is the relative frequency of class j at node t;
0 log(0) ≝ 0 is used!

 Origin: In information theory, entropy quantifies the amount of
uncertainty involved in the value of a random. Here the random variable
is the class label of a randomly chosen observation in a node.

Maximum Impurity: log(𝑛𝑛𝑐𝑐) when records are equally distributed among
all classes.
Minimum Impurity: 0 when all records belong to one class. We can

perfectly predict the class label of each observation in the node.

Entropy t = −�
𝑗𝑗

𝑝𝑝 𝑗𝑗 𝑡𝑡) log(𝑝𝑝 𝑗𝑗 𝑡𝑡))

Examples: Entropy

C1 0
C2 6

C1 3
C2 3

C1 1
C2 5

P(C1) = 0/6 = 0 P(C2) = 6/6 = 1

Entropy = – 0 log 0 – 1 log 1 = – 0 – 0 = 0

P(C1) = 1/6 P(C2) = 5/6

Entropy = – (1/6) log2 (1/6) – (5/6) log2 (1/6) = 0.65

P(C1) = 3/6 P(C2) = 3/6

Entropy = – (3/6) log2 (3/6) – (3/6) log2 (3/6) = 1

Entropy t = −�
𝑗𝑗

𝑝𝑝 𝑗𝑗 𝑡𝑡) log(𝑝𝑝 𝑗𝑗 𝑡𝑡))

Splitting based on Information Gain

 Parent Node, 𝑝𝑝 is split into 𝑘𝑘 partitions;
 𝑛𝑛𝑖𝑖 is number of records in partition 𝑖𝑖

Measures reduction in Entropy achieved because of the split.
Choose the split that achieves most reduction (maximizes GAIN)

Used in ID3, C4.5 and C5.0
Disadvantage: Tends to prefer splits that result in large number of

partitions, each being small but pure.

𝐺𝐺𝐴𝐴𝐺𝐺𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠 = 𝐸𝐸𝑛𝑛𝑡𝑡𝐸𝐸𝐸𝐸𝑝𝑝𝑦𝑦 𝑝𝑝 − �
𝑖𝑖=1

𝑘𝑘
𝑛𝑛𝑖𝑖
𝑛𝑛
𝐸𝐸𝑛𝑛𝑡𝑡𝐸𝐸𝐸𝐸𝑝𝑝𝑦𝑦(𝑖𝑖)

Splitting based on the Gain Ratio

 Parent Node, 𝑝𝑝 is split into 𝑘𝑘 partitions;
 𝑛𝑛𝑖𝑖 is number of records in partition i

 Adjusts Information Gain by the entropy of the partitioning (SplitInfo).
Higher entropy partitioning (large number of small partitions) is
penalized!

 Used in C4.5
 Designed to overcome the disadvantage of Information Gain.

𝐺𝐺𝐺𝐺𝑖𝑖𝑛𝑛𝐺𝐺𝐺𝐺𝑡𝑡𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠 =
𝐺𝐺𝐴𝐴𝐺𝐺𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠
𝑆𝑆𝑝𝑝𝑆𝑆𝑖𝑖𝑡𝑡𝐺𝐺𝑛𝑛𝑓𝑓𝐸𝐸

𝑆𝑆𝑝𝑝𝑆𝑆𝑖𝑖𝑡𝑡𝐺𝐺𝑛𝑛𝑓𝑓𝐸𝐸 = −�
𝑖𝑖=1

𝑘𝑘
𝑛𝑛𝑖𝑖
𝑛𝑛
𝑆𝑆𝐸𝐸𝑙𝑙

𝑛𝑛𝑖𝑖
𝑛𝑛

Measures of Node Impurity

Gini Index Entropy Clas s ification
e rror

Splitting Criteria based on Classification Error

 Classification error at a node t :

𝑝𝑝(𝑗𝑗 | 𝑡𝑡) is the relative frequency of class 𝑗𝑗 at node 𝑡𝑡

 Measures the classification error made in a node by a s imple classifier that
always predict the majority class (given by the max(⋅) in the equation).

 Maximum Impurity: 1 − 1
𝑛𝑛𝑐𝑐

 when records are equally distributed among all
classes (maximal error).
 Minimum Impurity: 0 when all records belong to one class = maximal purity

(no error)

 Splitting decision: Use weighted averages or gain as for the other indices to
make the splitting decision.

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑡𝑡 = 1 − max
𝑖𝑖
𝑝𝑝 𝑖𝑖 𝑡𝑡)

Examples: Classification Error

C1 0

C2 6

C1 3

C2 3

C1 1

C2 5

P(C1) = 0/6 = 0 P(C2) = 6/6 = 1

Error = 1 – max (0, 1) = 1 – 1 = 0

P(C1) = 1/6 P(C2) = 5/6

Error = 1 – max (1/6, 5/6) = 1 – 5/6 = 1/6

P(C1) = 3/6 P(C2) = 3/6

Error = 1 – max (3/6, 3/6) = 1 – 3/6 = .5

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑡𝑡 = 1 − max
𝑖𝑖
𝑝𝑝 𝑖𝑖 𝑡𝑡)

		C1

		0

		C2

		6

		C1

		3

		C2

		3

		C1

		1

		C2

		5

Comparison among Splitting Criteria
For a 2-class problem: Probability of the majority class p is always > .5

Note : The order is the same no matter what splitting criterion is used,
however, the gain (differences) are not s ince they depend on the slope.

Probability of majority class

unus ed

Tree Induction

Greedy strategy
—Split the records based on an attribute test that optimizes a certain

criterion.

 Issues
—Determine how to split the record using different attribute types.
—How to determine the best split?
—Determine when to s top splitting

Stopping Criteria for Tree Induction

 Stop expanding a node when a ll the records be long
to the s ame c las s (used Hunt's algorithm).

 Stop expanding a node when all the records in the
node have the s ame a ttribute va lues . Splitting
becomes impossible.

 Early te rmination crite rion. Stop when more splits
will lead to overfitting the training data. We will
discuss this later with tree pruning.

Standard
method

Advantages of Decision Trees

INEXPENSIVE TO
CONSTRUCT

EXTREMELY FAST AT
CLASSIFYING

UNKNOWN RECORDS

EASY TO INTERPRET
FOR SMALL-SIZED

TREES

ACCURACY IS
COMPARABLE TO

OTHER
CLASSIFICATION

TECHNIQUES FOR
MANY SIMPLE DATA

SETS

Example: C4.5

 Simple depth-first construction.
Uses Information Gain (improvement of the entropy measure).
Handling both continuous and discrete attributes (continuous

attributes are split at threshold).
Needs entire data to fit in memory (unsuitable for large datasets).
 Final trees are pruned to remove branches that hurt performance.

Code available at
—http://www.cse.unsw.edu.au/~quinlan/c4.5r8.tar.gz
—Open-Source implementation as J48 in Weka/rWeka

http://www.cse.unsw.edu.au/%7Equinlan/c4.5r8.tar.gz

Topics

 Introduction
 Decision Trees

—Overview
—Tree Induction

 Overfitting and other Practica l Is s ues
 Model Selection and Evaluation

—Metrics for Performance Evaluation
—Methods to Obtain Reliable Estimates
—Model Comparison (Relative Performance)

 Feature Selection

Model Selection: Bias vs. Variance

Low Variance : difference in the model due to s lightly different data. high

High Bias : restrictions by the model class Low

Two
samples
from the
same
function 𝑓𝑓
(points) with
the learned
function ℎ
(lines).

Consis tency
(fit)

Simplicity
(fewer parameters)

Overfitting
to training
data

Note: This trade-off applies to any model.

Example: Underfitting and Overfitting
How is the data
generated?

500 circular and 500
triangular data points.

Circular points :
0.5 ≥ 𝑠𝑠𝑠𝑠𝐸𝐸𝑡𝑡 𝑥𝑥1

2 + 𝑥𝑥2
2 ≤ 1

Triangular points :

𝑠𝑠𝑠𝑠𝐸𝐸𝑡𝑡 𝑥𝑥1
2 + 𝑥𝑥2

2 < 0.5 or
𝑠𝑠𝑠𝑠𝐸𝐸𝑡𝑡(𝑥𝑥1

2 + 𝑥𝑥2
2) > 1

Example: Underfitting and Overfitting

Underfitting: The model is too s imple, both training and test errors are large.
Overfitting: The model is too complicated and starts memorizing the training data.
 Generalization error goes up again.

Resubstitution Error

Generalization Error

Underfitting

Overfitting

Optimal
Complexity

Example: Underfitting due to Insufficient
Examples

Lack of tra ining data points in the lower ha lf of the diagram makes it
difficult to predic t correctly the c las s labe ls of that region

test

Training point

Test point

Example: Overfitting due to Noise

Decis ion boundary is dis torted to accommodate a nois e point

Training Error vs. Generalization Error

 Training error is reduced by overfitting and results in decision
trees that a re more complex than neces s ary.

 Training error does not provide a good estimate of how well the
tree will perform on new example (e.g., test data).

We need to estimate the Genera liza tion Error expected for new
data.

Estimating the Generalization Error

Res ubs titution e rror 𝒆𝒆: error on training set
Genera liza tion e rror 𝒆𝒆𝒆: error on testing set

Methods for estimating generalization errors:
1. Optimis tic approach: assume 𝑒𝑒𝒆 = 𝑒𝑒
2. Pes s imis tic approach:

— Estimate as 𝑒𝑒𝒆 = 𝑒𝑒 + 𝐺𝐺 × 0.5 (𝐺𝐺: number of leaf nodes)
— For a tree with 30 leaf nodes and 10 errors on training out of 1000 training

instances:
 Training error 𝑒𝑒 = 10/1000 = 1%
 Estimated generalization error 𝑒𝑒′ = (10 + 30 𝑥𝑥 0.5)/1000 = 2.5%

3. Validation approach:
— uses a validation (test) data set (or cross-validation) to estimate the

generalization error.

Penalty for
model complexity!

0.5 per leave node is often
used for binary splits.

Occam’s Razor
-

The Principle of
Parsimony

"Simpler is be tte r"

 Given two models of s imilar generalization errors, one should
prefer the s impler model over the more complex model.

 Reason: Complex models have a greater chance of overfitting.
I.e., it fitted accidentally errors in the training data.

There fore, one should cons ide r a lso mode l complexity when
evaluating a mode l.

How to Address Overfitting in Decision Trees

 Full tree (will overfit)
— Stop if all instances belong to the s ame clas s .
— Stop if all the a ttribute va lues a re the s ame.

Reduce overfitting with pre-pruning / early s topping
— Stop if number of ins tances is less than some user-specified threshold

(estimates become bad for small sets of instances).
— Stop if class distribution of instances are independent of the available

features (e.g., using a 𝜒𝜒2 test).
— Stop if expanding the current node does not improve impurity

measures more than a user-specified threshold (e.g., Gini or information
gain).

How to Address Overfitting in Decision Trees

Reduce overfitting with pos t-pruning
1. Grow complete decision tree.
2. Try to prune sub-trees of the decision tree in a bottom-up

fashion.

Options:
—Genera lization error: If generalization error improves after pruning a

sub-tree, replace the sub-tree by a leaf node with the majority class of
the training instances as the predicted label.

—Penalty for complexity: You can use Maximum Description Length
(MDL).

Refresher: Minimum Description Length (MDL)

 𝐶𝐶𝐸𝐸𝑠𝑠𝑡𝑡(𝑀𝑀𝐸𝐸𝑀𝑀𝑒𝑒𝑆𝑆) encodes each node (splitting condition and children).
 𝐶𝐶𝐸𝐸𝑠𝑠𝑡𝑡(𝐷𝐷𝐺𝐺𝑡𝑡𝐺𝐺|𝑀𝑀𝐸𝐸𝑀𝑀𝑒𝑒𝑆𝑆) encodes information to correct misclassification errors.

 𝐶𝐶𝐸𝐸𝑠𝑠𝑡𝑡 𝑀𝑀𝐸𝐸𝑀𝑀𝑒𝑒𝑆𝑆,𝐷𝐷𝐺𝐺𝑡𝑡𝐺𝐺 = 𝐶𝐶𝐸𝐸𝑠𝑠𝑡𝑡 𝐷𝐷𝐺𝐺𝑡𝑡𝐺𝐺 𝑀𝑀𝐸𝐸𝑀𝑀𝑒𝑒𝑆𝑆 + 𝐶𝐶𝐸𝐸𝑠𝑠𝑡𝑡 𝑀𝑀𝐸𝐸𝑀𝑀𝑒𝑒𝑆𝑆 → 𝑚𝑚𝑖𝑖𝑛𝑛
—Cost is the number of bits needed for encoding.

A B

A?

B?

C?

10

0

1

Yes No

B1 B2

C1 C2

X y
X1 1
X2 0
X3 0
X4 1
… …
Xn 1

X y
X1 ?
X2 ?
X3 ?
X4 ?
… …
Xn ?mistakes

𝐶𝐶𝐸𝐸𝑠𝑠𝑡𝑡(𝑀𝑀𝐸𝐸𝑀𝑀𝑒𝑒𝑆𝑆)

𝐶𝐶𝐸𝐸𝑠𝑠𝑡𝑡(𝐷𝐷𝐺𝐺𝑡𝑡𝐺𝐺|𝑀𝑀𝐸𝐸𝑀𝑀𝑒𝑒𝑆𝑆)

Penalty for
model complexity!

This is equivalent to
the pessimistic

generalization error.

Example: Post-Pruning

A?

A1

A2 A3

A4

Class = Yes 20

Class = No 10
Error = 10/30

Before split:
Training Error = 10/30
Pessimistic error = (10 + 1 x 0.5)/30 = 10.5/30

Afte r split:
Training Error = 9/30
Pessimistic error = (9 + 4 x 0.5)/30 = 11/30

Class = Yes 8
Class = No 4

Class = Yes 3
Class = No 4

Class = Yes 4
Class = No 1

Class = Yes 5
Class = No 1

Error = 9/30

Training error decreases but
pessimistic error estimate increases! PRUNE!

Other issues:
Data Fragmentation and Search Strategy

Data Fragmentation
Number of instances gets smaller as you traverse down the tree

and can become too small to make a statistically s ignificant
decision (splitting or determining the class in a leaf node)

→ Many algorithms s top when a node has not enough ins tances .

Search Stra tegy
 Finding an optimal decision tree is NP-hard
→ Most algorithm use a greedy, top-down, recurs ive partitioning
s tra tegy to induce a reasonable solution.

Other issues: Tree Replication

P

Q R

S 0 1

0 1

Q

S 0

0 1

 Same subtree appears in multiple branches.

 Makes the model more complicated and harder to interpret.

Decision Boundary of a Classifier

 The border line between two neighboring regions of different classes is known as the decis ion boundary.

 The decis ion boundary of decis ion trees is parallel to the axes because each test condition represents a
threshold on a s ingle attribute.

 Not expressive enough for modeling continuous variables directly. Discretization is performed for the
splits.

Oblique Decision Trees

x + y < 1

Clas s = + Clas s =

 The test condition may involve multiple attributes.

 More expressive representation.

 Finding the optimal test condition is computationally
expensive!

Not us ed in practice for decis ion
trees but Linear Discriminant Analysis
(LDA) can learn a s ingle oblique
decis ion boundary.

Topics

 Introduction
 Decision Trees

—Overview
—Tree Induction

 Overfitting and other Practical Issues
 Model Se lec tion and Evaluation

—Metrics for Performance Evaluation
—Methods to Obtain Reliable Estimates
—Model Comparison (Relative Performance)

 Feature Selection

Metrics for Performance Evaluation:
Confusion Matrix
 Focuses on the predictive capability of a model (not speed, scalability, etc.)
 For s implicity, we will present a binary classification problem here, but most

measures generalize to multi-class problems.

PREDICTED CLASS

ACTUAL
CLASS

Class=Yes Class=No

Class=Yes a
(TP)

b
(FN)

Class=No c
(FP)

d
(TN)

a: TP (true pos itive)

b: FN (fa ls e negative)

c: FP (fa ls e pos itive)

d: TN (true negative)

Confusion Matrix

Metrics for Performance Evaluation:
Statistical Test

From Statistics: Null Hypotheses 𝐻𝐻𝐻 is that the actual class is Yes.

PREDICTED CLASS

ACTUAL
CLASS

Class=Yes Class=No

Class=Yes Type I e rror
(FN)

Class=No Type II
e rror
(FP)

Type I error: 𝑃𝑃(NO | 𝐻𝐻𝐻 is true) → Significance level 𝛼𝛼
Type II error: 𝑃𝑃(Yes | 𝐻𝐻𝐻 is false) → Power 1 − 𝛽𝛽

𝐻𝐻𝐻

Metrics for Performance Evaluation:
Accuracy
Most widely-used metric:
How many do we predict correct (in percent)?

PREDICTED CLASS

ACTUAL
CLASS

Class=Yes Class=No

Class=Yes a
(TP)

b
(FN)

Class=No c
(FP)

d
(TN)

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐸𝐸𝐺𝐺𝐴𝐴𝑦𝑦 =
𝐺𝐺 + 𝑀𝑀

𝐺𝐺 + 𝑏𝑏 + 𝐴𝐴 + 𝑀𝑀
=
𝑇𝑇𝑃𝑃 + 𝑇𝑇𝐺𝐺

𝐺𝐺

Limitation of Accuracy

Consider a 2-class problem with a total population of
—Number of Class 0 examples = 9990
—Number of Class 1 examples = 10

A model that predicts everything to be class 0, has an accuracy of
9990/10000 = 99.9 %

Accuracy is misleading because the model does not detect any
class 1 example!

→ This is a very common problem called the
c las s imbalance problem

It is best to
always say

Class 0

Cost Matrix

PREDICTED CLASS

ACTUAL
CLASS

C(i|j) Clas s =Yes Clas s =No

Clas s =Yes C(Yes|Yes) C(No|Yes)

Clas s =No C(Yes|No) C(No|No)

𝐶𝐶 𝑖𝑖 𝑗𝑗): Cost of misclassifying class 𝑗𝑗 example as class 𝑖𝑖

Different types of error can have different cost!

Computing the Cost of Classification
Cost

Matrix
PREDICTED CLASS

ACTUAL
CLASS

C(i|j) + -
+ -1 100
- 1 0

Model M1 PREDICTED CLASS

ACTUAL
CLASS

+ -

+ 150 40
- 60 250

Model M2 PREDICTED CLASS

ACTUAL
CLASS

+ -

+ 250 45
- 5 200

Accuracy = 80%
Cost = -1*150+100*40+

1*60+0*250 = 3910

Accuracy = 90%
Cost = 4255

Missing a ‘+’ case is
really expensive!

Cost-Biased Measures
(from Information Retrieval)

 Precision only considers cost for examples predicted as Yes.
 Recall only considers cost for examples that are truly Yes.
 F-measure combines precision and recall and ignores d.

PREDICTED CLASS

ACTUAL
CLASS

Class
Yes

Class
No

Class
Yes

a
(TP)

b
(FN)

Class
No

c
(FP)

d
(TN)

𝑃𝑃𝐸𝐸𝑒𝑒𝐴𝐴𝑖𝑖𝑠𝑠𝑖𝑖𝐸𝐸𝑛𝑛 𝑝𝑝 =
𝐺𝐺

𝐺𝐺 + 𝐴𝐴
𝐺𝐺𝑒𝑒𝐴𝐴𝐺𝐺𝑆𝑆𝑆𝑆 𝐸𝐸 =

𝐺𝐺
𝐺𝐺 + 𝑏𝑏

𝐹𝐹 −𝑚𝑚𝑒𝑒𝐺𝐺𝑠𝑠𝐴𝐴𝐸𝐸𝑒𝑒 𝐹𝐹 =
2𝐸𝐸𝑝𝑝
𝐸𝐸 + 𝑝𝑝

=
2𝐺𝐺

2𝐺𝐺 + 𝑏𝑏 + 𝐴𝐴

Kappa Statistic PREDICTED CLASS

ACTUAL
CLASS

Class
Yes

Class
No

Class
Yes

a
(TP)

b
(FN)

Class
No

c
(FP)

d
(TN)

Idea: Compare the accuracy of the
classifier with a random clas s ifie r.
The classifier should be better than
random!

𝜅𝜅 =
total accuracy − random accuracy

1 − random accuracy

total accuracy =
𝑇𝑇𝑃𝑃 + 𝑇𝑇𝐺𝐺

𝐺𝐺
random accuracy =

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃 × 𝑇𝑇𝐺𝐺 + 𝐹𝐹𝐺𝐺 + 𝐹𝐹𝐺𝐺 + 𝑇𝑇𝐺𝐺 × 𝐹𝐹𝑃𝑃 + 𝑇𝑇𝑃𝑃
𝐺𝐺2

Receiver Operating
Characteristic
(ROC)

 Developed in 1950s for s ignal detection
theory to analyze noisy s ignals to
characterize the trade-off between positive
hits and false alarms.

 Works only for binary classification (two-
class problems).

 ROC curve plots TPR (true positive rate) on
the y-axis against FPR (false positive rate)
on the x-axis.

 Performance of each classifier represented
as a point. Changing the threshold of the
algorithm, sample distribution or cost
matrix changes the location of the point
and forms a curve.

ROC Curve
 Example with 1-dimensional data set containing 2 classes (positive and negative)
 Any points located at x > t is classified as positive

FPR=0.12

TPR=0.5

 Move t to get the other points on the ROC curve.

Pr
ob

t

ROC

At threshold t:
TPR=0.5, FNR=0.5, FPR=0.12, FNR=0.88

ROC Curve

(TPR,FPR):
 (0,0): declare everything

 to be negative class
 (1,1): declare everything

 to be positive class
 (1,0): ideal

Diagonal line:
—Random guessing
—Below diagonal line:

prediction is opposite of the
true class

Ideal
Classifier

Random
Guessing Line

Below the diagonal:
predict the opposite class

Using ROC for Model Comparison

No model consistently
outperform the other
-M1 is better for small FPR
-M2 is better for large FPR

Area Under the ROC curve
(AUC)
-Ideal:

• AUC = 1
-Random guess:

• AUC = 0.5

Topics

 Introduction
 Decision Trees

—Overview
—Tree Induction

 Overfitting and other Practical Issues
 Model Selection and Evaluation

—Metrics for Performance Evaluation
—Methods to Obta in Reliable Es timates
—Model Comparison (Relative Performance)

 Feature Selection

Training data s ize (log scale)

Variation
for different

runs

Learning Curve

Learning curve shows
how accuracy on
unseen examples
changes with
varying training
sample s ize

Accuracy and variance between runs depend on the s ize of the training data.

Estimating the Generalization Error
Using Test Data

 To estimate generalization error we need to
separate the data into a set to train and a set to
test.

Holdout tes ting/Random s plits : Split the data
randomly into, e.g., 80% training and 20%
testing.

Very important: the algorithm can never look at
the test set during learning! Test

Data

Training
Data

𝑘𝑘-fold Cross
Validation

shuffle

1
2
3
4
5
6
7
8
9

10

model
train

test

Error on fold 10
Error on fold 9
Error on fold 8
Error on fold 7
.
.
.
Error on fold 1

Data Folds

Average
Error

k-fold cros s va lidation: Use data better to estimate the
generalization error:

 Split the data randomly into k folds.
 For 𝑘𝑘 rounds hold 1 fold back for testing and

use the remaining 𝑘𝑘 − 1 folds for training.
 Use the average of the error/accuracy as a

better estimate.
 Some algorithms/tools do that internally.

Training and Testing with Hyperparameters

Hyperparamete rs : Many algorithms allow choices for
learning. E.g.,

—maximal decision tree depth
—selected features

We do not want to overfit the hyperparameters!!!
Use a generalization error estimate twice:
1. Tra in: Learn models on the tra ining data (without

the validation data) using different
hyperparameters.

—A grid of possible hyperparameter combinations
—greedy search

2. Model Se lec tion: Evaluate the models using the
va lidation data and choose the hyperparameters
with the best accuracy. Rebuild the model using all
the training data.

3. Tes t the final model using the tes t data .

Test
Data

Training
Data

Validation
Data

Typical Data Use with Model Selection

Test
Data

Training
Data

Validation
Data

Tes t data : Split the data
randomly into 20%
testing and 80% training
+ validation.

Model Se lection: Use
training & validation
data with 10-fold cross
validation for choosing
between models and
hyper parameter
tuning.

Confidence Interval for Accuracy

 The observed accuracy is an es timate of the true accuracy of the model.
How good is the estimate?

 Each prediction can be regarded as a Bernoulli tria l: A Bernoulli trial (a
biased coin toss) has 2 possible outcomes:
 heads (correct) or tails (wrong)

We use 𝑝𝑝 for the true chance that a prediction is correct (= true accuracy).

 Predictions for a test set of s ize 𝐺𝐺 are a collection of 𝐺𝐺 Bernoulli trials. The
number of correct predictions 𝑥𝑥 has a Binomial dis tribution:

𝑋𝑋 ~ 𝐵𝐵𝑖𝑖𝑛𝑛𝐸𝐸𝑚𝑚𝑖𝑖𝐺𝐺𝑆𝑆 𝐺𝐺, 𝑝𝑝

 Example: Toss a fair coin 50 times, how many heads would turn up?
Expected number of heads 𝐸𝐸[𝑋𝑋] = 𝐺𝐺𝑝𝑝 = 50 × 0.5 = 25

 Application for Accuracy: If we observe 𝑥𝑥 correct predictions then the
observed accuracy is

�̂�𝑝 = 𝑥𝑥/𝐺𝐺

Can we give bounds for the true accuracy of model 𝑝𝑝?

Confidence Interval
for Accuracy
For large test sets (𝐺𝐺 > 30) we
can approximate the Binomial
distribution

𝑋𝑋 ~ 𝐵𝐵𝑖𝑖𝑛𝑛𝐸𝐸𝑚𝑚𝑖𝑖𝐺𝐺𝑆𝑆 𝐺𝐺, 𝑝𝑝

by a Normal distribution:

𝑋𝑋 ~ 𝐺𝐺𝐸𝐸𝐸𝐸𝑚𝑚𝐺𝐺𝑆𝑆(𝐺𝐺𝑝𝑝,𝐺𝐺𝑝𝑝 1 − 𝑝𝑝)

Confidence Interval for 𝑝𝑝 = 𝑋𝑋
𝑁𝑁

(Wald Method):

�̂�𝑝 ± 𝑧𝑧𝛼𝛼/2
�̂�𝑝 1 − �̂�𝑝

𝐺𝐺

𝐴𝐴𝐸𝐸𝑒𝑒𝐺𝐺 = 1 − 𝛼𝛼

−𝑧𝑧𝛼𝛼/2 𝑧𝑧𝛼𝛼/2

Confidence Interval for Accuracy

Consider a model that produces an accuracy of 80% when
evaluated on 100 test instances:

1. 𝐺𝐺 = 100, 𝐺𝐺𝐴𝐴𝐴𝐴 = 0.8
2. Let 1 − 𝛼𝛼 = 0.95 (95% confidence)
3. Find the critical value for the normal distribution.

 𝑧𝑧𝛼𝛼/2 = 1.96
4. Calculate the interval around the accuracy.

1 − 𝛼𝛼/2 𝑧𝑧𝛼𝛼/2

0.99 2.58
0.98 2.33
0.95 1.96
0.90 1.65

Table or
R 𝑠𝑠𝑛𝑛𝐸𝐸𝐸𝐸𝑚𝑚(1 − 𝛼𝛼/2)

�̂�𝑝 ± 𝑧𝑧𝛼𝛼/2
�̂�𝑝 1 − �̂�𝑝

𝐺𝐺 = �0.722
0.878

Data mining tools typically calculate this for us.

Topics

 Introduction
 Decision Trees

—Overview
—Tree Induction

 Overfitting and other Practical Issues
 Model Selection and Evaluation

—Metrics for Performance Evaluation
—Methods to Obtain Reliable Estimates
—Model Comparis on (Relative Performance)

 Feature Selection

Comparing Performance between 2 Models

Given two models, say 𝑀𝑀1 and 𝑀𝑀2, which is better? This is a statistical model s e lec tion
problem.

For large test sets (𝐺𝐺 > 30) we can approximate the observed accuracies (sampled
from a Binomial distribution) using the true but unknown model accuracies 𝑝𝑝1 and 𝑝𝑝2:

𝐺𝐺𝐴𝐴𝐴𝐴1 ~ 𝐺𝐺𝐸𝐸𝐸𝐸𝑚𝑚𝐺𝐺𝑆𝑆(𝐺𝐺𝑝𝑝1,𝐺𝐺𝑝𝑝1 1 − 𝑝𝑝1)
𝐺𝐺𝐴𝐴𝐴𝐴2 ~ 𝐺𝐺𝐸𝐸𝐸𝐸𝑚𝑚𝐺𝐺𝑆𝑆(𝐺𝐺𝑝𝑝2,𝐺𝐺𝑝𝑝2(1 − 𝑝𝑝2))

Perform a paired t-test with:
H0: There is no difference between the observed accuracies of the models.
H1: There is a difference.

Notes
 Hyperparameter tuning is also a model selection problem.
 Comparing more than two models : You need to correct for multiple comparis ons !

For example, using Bonferroni correction or False Discovery Rate (FDR).

Topics

 Introduction
 Decision Trees

—Overview
—Tree Induction

 Overfitting and other Practical Issues
 Model Selection and Evaluation

—Metrics for Performance Evaluation
—Methods to Obtain Reliable Estimates
—Model Comparison (Relative Performance)

 Feature Se lec tion

Feature Selection

Univariate feature importance
score

• Measures how related each
feature is to the class
variable.

• E.g., chi-squared statistic,
information gain.

Feature subset selection

• Tries to find the best set of
features.

• Often uses a black box
approach where different
subsets are evaluated using
a greedy search strategy.

• E.g.: Stepwise backward
selection tries to remove one
feature at a time.

What features should be used in the model?

Conclusion

 Classification is s upervis ed learning with the
goal to find a model that predicts well (i.e., has a
low generalization error).

 Generalization e rror can be estimated using test
sets /cross-validation and should be used for
model selection.

 Model evaluation and comparison needs to take
model complexity into account.

	Introduction to �Data Mining ���Chapter 3 �Classification – �Basic Concepts�
	R Code Examples
	Topics
	Supervised Learning – Learning from Examples
	Illustrating Classification Task
	Examples of Classification Task
	Topics
	Example of a Decision Tree
	Another Example of Decision Tree
	Decision Tree: Deduction
	Apply Model to Test Data
	Apply Model to Test Data
	Apply Model to Test Data
	Apply Model to Test Data
	Apply Model to Test Data
	Apply Model to Test Data
	Topics
	Decision Tree: Induction
	Decision Tree Induction
	The Effect of a Split
	Hunt’s Algorithm
	Example: Creating a Decision Tree
	Example: Creating a Decision Tree
	Tree Induction
	Tree Induction
	How to Specify Test Condition?
	Splitting Based on Nominal Attributes
	Splitting Based on Ordinal Attributes
	Splitting Based on Continuous Attributes
	Tree Induction
	How to determine the Best Split
	Determine the Quality of a Node: �Node Impurity
	Find the Best Split: General Framework
	Measures of Node Impurity
	Measure of Impurity: Gini Index of a Node
	Examples: Gini Index of a Node
	Splitting Based on the Gini Index
	Example: Splitting based on the Gini Index
	Continuous Attributes: Computing Gini Index
	Measures of Node Impurity
	Measure of Impurity: Entropy
	Examples: Entropy
	Splitting based on Information Gain
	Splitting based on the Gain Ratio
	Measures of Node Impurity
	Splitting Criteria based on Classification Error
	Examples: Classification Error
	Comparison among Splitting Criteria
	Tree Induction
	Stopping Criteria for Tree Induction
	Advantages of Decision Trees
	Example: C4.5
	Topics
	Model Selection: Bias vs. Variance
	Example: Underfitting and Overfitting
	Example: Underfitting and Overfitting
	Example: Underfitting due to Insufficient Examples
	Example: Overfitting due to Noise
	Training Error vs. Generalization Error
	Estimating the Generalization Error
	Occam’s Razor �-�The Principle of Parsimony
	How to Address Overfitting in Decision Trees
	How to Address Overfitting in Decision Trees
	Refresher: Minimum Description Length (MDL)
	Example: Post-Pruning
	Other issues:�Data Fragmentation and Search Strategy
	Other issues: Tree Replication
	Decision Boundary of a Classifier
	Oblique Decision Trees
	Topics
	Metrics for Performance Evaluation: Confusion Matrix
	Metrics for Performance Evaluation:�Statistical Test
	Metrics for Performance Evaluation:�Accuracy
	Limitation of Accuracy
	Cost Matrix
	Computing the Cost of Classification
	Cost-Biased Measures (from Information Retrieval)
	Kappa Statistic
	Receiver Operating Characteristic (ROC)
	ROC Curve
	ROC Curve
	Using ROC for Model Comparison
	Topics
	Learning Curve
	Estimating the Generalization Error �Using Test Data
	𝑘-fold Cross Validation
	Training and Testing with Hyperparameters
	Typical Data Use with Model Selection
	Confidence Interval for Accuracy
	Confidence Interval for Accuracy
	Confidence Interval for Accuracy
	Topics
	Comparing Performance between 2 Models
	Topics
	Feature Selection
	Conclusion

