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—Methods to Obtain Reliable Estimates
—Model Comparison (Relative Performance)

 Feature Selection



Supervised Learning – Learning from Examples

 Examples
—Input-output pairs : E = 𝑥𝑥1,𝑦𝑦1 , … , 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 , … , 𝑥𝑥𝑁𝑁,𝑦𝑦𝑁𝑁 .
—We assume that the examples are produced iid (with noise and errors) from a 

target function 𝑦𝑦 = 𝑓𝑓(𝑥𝑥).

 Learning problem
—Given a hypothesis  space H
—Find a hypothesis  ℎ ∈ 𝐻𝐻 such that �𝑦𝑦𝑖𝑖 = ℎ(𝑥𝑥𝑖𝑖) ≈ 𝑦𝑦𝑖𝑖
—That is, we want to approximate 𝑓𝑓 by ℎ using E. 

 Includes
—Regres s ion (outputs  = real numbers).  Goal: Predict the number accurately.

E.g., x is  a house and 𝑓𝑓(𝑥𝑥) is  its  selling price.
—Clas s ification (outputs  = class  labels).  Goal: Assign new records to a class.

E.g., 𝑥𝑥 is  an email and 𝑓𝑓(𝑥𝑥) is  spam / ham

𝑓𝑓

You already know linear regression. We focus on Classification.

𝑓𝑓



Illustrating Classification Task

𝑦𝑦 = ℎ(𝑥𝑥)

yxE



Examples of 
Classification Task

 Predicting tumor cells  as  benign or 
malignant.

 Classifying credit card transactions 
as  legitimate or fraudulent.

 Categorizing news stories  
as  finance, weather, entertainment, 
sports, etc.
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Example of a Decision Tree

Tid 
 

Refund Marital 

Status 

Taxable 

Income Cheat 

1 Yes Single 125K No 
2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 
 

Re fund

MarSt

TaxInc

YESNO

NO

NO

Yes No

Married Single, Divorced

< 80K > 80K

Splitting Attributes

Tra ining Data Model:  Decis ion Tree

Learn


		Tid




		Refund

		Marital

Status

		Taxable

Income

		Cheat



		1

		Yes

		Single

		125K

		No



		2

		No

		Married

		100K

		No



		3

		No

		Single

		70K

		No



		4

		Yes

		Married

		120K

		No



		5

		No

		Divorced

		95K

		Yes



		6

		No

		Married

		60K

		No



		7

		Yes

		Divorced

		220K

		No



		8

		No

		Single

		85K

		Yes



		9

		No

		Married

		75K

		No



		10

		No

		Single

		90K

		Yes





10



Another Example of Decision Tree

Tid Refund Marital
Status

Taxable
Income Cheat

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10

MarSt

Refund

TaxInc

YESNO

NO

NO

Yes No

Married 
Single, 

Divorced

< 80K > 80K

There  could be  more  than one  tree  that 
fits  the  s ame data!

Learn



Decision Tree: Deduction

Decision 
Tree



Apply Model to Test Data

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

Married Single, Divorced

< 80K > 80K

Refund Marital 
Status 

Taxable 
Income Cheat 

No Married 80K ? 
10 

 

Tes t Data
Start from the root of tree.



Apply Model to Test Data

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

Married Single, Divorced

< 80K > 80K

Refund Marital 
Status 

Taxable 
Income Cheat 

No Married 80K ? 
10 

 

Tes t Data



Apply Model to Test Data

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

Married Single, Divorced

< 80K > 80K

Refund Marital 
Status 

Taxable 
Income Cheat 

No Married 80K ? 
10 

 

Tes t Data



Apply Model to Test Data

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

Married Single, Divorced

< 80K > 80K

Refund Marital 
Status 

Taxable 
Income Cheat 

No Married 80K ? 
10 

 

Tes t Data



Apply Model to Test Data

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

Married Single, Divorced

< 80K > 80K

Refund Marital 
Status 

Taxable 
Income Cheat 

No Married 80K ? 
10 

 

Tes t Data



Apply Model to Test Data

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

Married Single, Divorced

< 80K > 80K

Refund Marital 
Status 

Taxable 
Income Cheat 

No Married 80K ? 
10 

 

Tes t Data

Assign Cheat to “No”
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Decision Tree: Induction

Decision 
Tree



Decision Tree Induction

Many Algorithms:
—Hunt’s  Algorithm (one of the earliest)
—CART (Classification And Regression Tree)
—ID3, C4.5, C5.0 (by Ross Quinlan, introduced information gain)
—CHAID (CHi-squared Automatic Interaction Detection) 
—MARS (Improvement for numerical features)
—SLIQ, SPRINT
—Conditional Inference Trees (recursive partitioning using statistical tests)

All algorithms use a s imple, greedy  top-down splitting strategy!



The Effect of a Split

Refund

Don’t 
Cheat

mixed 

Yes No

Tid Refund Marital 

Status 

Taxable 

Income Cheat 

1 Yes Single 125K No 
2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 
 

Tid Refund Marital 

Status 

Taxable 

Income Cheat 

1 Yes Single 125K No 
2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 
 

Tid Refund Marital 

Status 

Taxable 

Income Cheat 

1 Yes Single 125K No 
2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 
 

Every split partitions the data set into two subsets.

No:  
3
Yes: 
0

No:  
4
Yes: 
3


		Tid

		Refund

		Marital

Status

		Taxable

Income

		Cheat



		1

		Yes

		Single

		125K

		No



		2

		No

		Married

		100K

		No



		3

		No

		Single

		70K

		No



		4

		Yes

		Married

		120K

		No



		5

		No

		Divorced

		95K

		Yes



		6

		No

		Married

		60K

		No



		7

		Yes

		Divorced

		220K

		No



		8

		No

		Single

		85K

		Yes



		9

		No

		Married

		75K

		No



		10

		No

		Single

		90K

		Yes





10


		Tid

		Refund

		Marital

Status

		Taxable

Income

		Cheat



		1

		Yes

		Single

		125K

		No



		2

		No

		Married

		100K

		No



		3

		No

		Single

		70K

		No



		4

		Yes

		Married

		120K

		No



		5

		No

		Divorced

		95K

		Yes



		6

		No

		Married

		60K

		No



		7

		Yes

		Divorced

		220K

		No



		8

		No

		Single

		85K

		Yes



		9

		No

		Married

		75K

		No



		10

		No

		Single

		90K

		Yes





10


		Tid

		Refund

		Marital

Status

		Taxable

Income

		Cheat



		1

		Yes

		Single

		125K

		No



		2

		No

		Married

		100K

		No



		3

		No

		Single

		70K

		No



		4

		Yes

		Married

		120K

		No



		5

		No

		Divorced

		95K

		Yes



		6

		No

		Married

		60K

		No



		7

		Yes

		Divorced

		220K

		No



		8

		No

		Single

		85K

		Yes



		9

		No

		Married

		75K

		No



		10

		No

		Single

		90K

		Yes





10



Hunt’s Algorithm

mixed
Refund

Don’t 
Cheat

mixed 

Yes No

Refund

Don’t 
Cheat

Yes No

Marital
Status

Don’t 
Cheat

Cheat

Single,
Divorced Married

Taxable
Income

Don’t 
Cheat

< 80K >= 80K

Refund

Don’t 
Cheat

Yes No

Marital
Status

Don’t 
Cheat

mixed

Single,
Divorced Married

Tid Refund Marital 

Status 

Taxable 

Income Cheat 

1 Yes Single 125K No 
2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 
 

"Use attributes  to split the data recursively, 
till each split contains only a s ingle class."  


		Tid

		Refund

		Marital

Status

		Taxable

Income

		Cheat



		1

		Yes

		Single

		125K

		No



		2

		No

		Married

		100K

		No



		3

		No

		Single

		70K

		No



		4

		Yes

		Married

		120K

		No



		5

		No

		Divorced

		95K

		Yes



		6

		No

		Married

		60K

		No



		7

		Yes

		Divorced

		220K

		No



		8

		No

		Single

		85K

		Yes



		9

		No

		Married

		75K

		No



		10

		No

		Single

		90K

		Yes





10



Example: Creating a Decision Tree

x1

x2

o
o

o
o

o o

o

o
o

x x x
x

x
x

x

x

0

2.5

X2 < 2.5

Blue circle Mixed

Yes No

Decision trees can only cut parallel to an axis!



Example: Creating a Decision Tree

x1

x2

o
o

o
o

o o

o

o
o

x x x
x

x
x

x

x

0

2.5

2

o
o

x

2

X2 < 2.5

Blue circle X1 < 2

Blue circle Red X

Yes No

Yes No



Tree Induction

Greedy strategy
—Split the records based on an attribute test that optimizes a certain 

criterion.

 Issues Refund

Don’t 
Cheat

Yes No

Marital
Status

Don’t 
Cheat

mixed

Single,
Divorced Married

Taxable
Income

Don’t 
Cheat

< 80K >= 80K
Determine when to 

stop splitting.

How to determine the 
best split variable? 

Order?

Determine how to 
split the records 
using different 
attribute types.



Tree Induction

Greedy strategy
—Split the records based on an attribute test that optimizes a certain 

criterion.

 Issues
—Determine  how to split the  records  us ing diffe rent a ttribute  types .
—How to determine the best split variable?
—Determine when to stop splitting.



How to Specify Test Condition?

Depends on attribute types
—Nominal
—Ordinal
—Continuous (interval/ratio)



Splitting Based on Nominal Attributes

Divide the unordered values into two subsets. 
We need to find optimal partitioning.

CarType
{Family, 
Luxury} {Sports}

CarType
{Sports, 
Luxury} {Family} OR

CarType
{Family, 
Sports} {Luxury}

Best decision depends on what we want to predict!



Splitting Based on Ordinal Attributes

Divide the ordered values into two subsets. 
  

What about this  split?

Size
{Medium, 

Large} {Small}
Size

{Small, 
Medium} {Large} OR

Size
{Small, 
Large} {Medium}



Splitting Based on Continuous Attributes
Binary split      Multi-way split

Discretization to form an ordinal categorical attribute:
• Static  – discretize the data set once at the beginning (equal 

interval, equal frequency, etc.). 
• Dynamic – discretize during the tree construction.

•  Example: For a binary decision (𝐴𝐴 <  𝑣𝑣) or (𝐴𝐴 ≥  𝑣𝑣) consider all possible 
splits  and finds the best cut. This  can be done efficiently.



Tree Induction

Greedy strategy
—Split the records based on an attribute test that optimizes a certain 

criterion.

 Issues
—Determine how to split the records using different attribute types.
—How to de termine  the  bes t split variable?
—Determine when to stop splitting



How to determine the Best Split

Before  Splitting: 10 records  of c las s  0,
 10 records  of c las s  1

Which splitting variable  is  the  bes t?

C0: 10
C1: 10



Determine the Quality of a Node: 
Node Impurity

 Nodes represent a subset of data that satisfy the splitting condition. 
We want to create nodes with homogeneous class  distributions.
 Need a measure of node impurity:

Non-homogeneous ,
High degree  of impurity

C0: 5
C1: 5

Homogeneous ,
Low degree  of impurity

C0: 9
C1: 1

This is  preferred

General rule for measures of impurity: 
—Smaller is  better. 
—0 represents  the complete purity.



Find the Best Split: General Framework
Before  Splitting:

Attribute A

Yes No

Node N1 Node N2
C0 N10
C1 N11

C0 N20
C1 N21

C0 N00
C1 N01

M0

M1 M2

Attribute B

Yes No

Node N3 Node N4
C0 N30
C1 N31

C0 N40
C1 N41

M3 M4

MB

We look at the improvement called the gain:
Gain = M0 – MA vs . M0 – MB   → Choose best split 

Assume we have a measure M that tells  us how "pure" a node is. 

MA 

Aggregate the purity 
measure of the child 
nodes into a s ingle 

number. 



Measures of Node Impurity

Gini Index Entropy Classification 
error



Measure of Impurity: Gini Index of a Node
 Gini Index for a given node t :

     𝑝𝑝( 𝑗𝑗 | 𝑡𝑡) is  estimated as  the relative frequency of class  j at node t

 Origin: The Gini index is  a measure of statistical dispersion intended to represent the income 
inequality within nations. Here it is  used as  a statistical measure that quantifies  how mixed 
or impure the class  distribution in a node is.

 Maximum Impurity:  1 –  1/𝑛𝑛𝑐𝑐 (number of classes) when records are equally distributed 
among all classes. For a binary decis ion it is  0.5.

 Minimum Impurity: 0 when all records belong to one class.

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑡𝑡 =  �
𝑗𝑗

𝑝𝑝 𝑗𝑗 𝑡𝑡)(1 − 𝑝𝑝 𝑗𝑗 𝑡𝑡)) = 1 −�
𝑗𝑗

𝑝𝑝 𝑗𝑗 𝑡𝑡 )2

C1 0
C2 6

Gini=0.000

C1 2
C2 4

Gini=0.444

C1 3
C2 3

Gini=0.500

C1 1
C2 5

Gini=0.278

 Examples



Examples: Gini Index of a Node

C1 0 
C2 6 

 

 

C1 2 
C2 4 

 

 

C1 1 
C2 5 

 

 

P(C1) = 0/6 = 0     P(C2) = 6/6 = 1

Gini = 1 – P(C1)2 – P(C2)2 = 1 – 0 – 1 = 0 

P(C1) = 1/6          P(C2) = 5/6

Gini = 1 – (1/6)2 – (5/6)2 = 0.278

P(C1) = 2/6          P(C2) = 4/6

Gini = 1 – (2/6)2 – (4/6)2 = 0.444

Maximal impurity here is  ½ = .5

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑡𝑡 = 1 −�
𝑗𝑗

𝑝𝑝 𝑗𝑗 𝑡𝑡 )2



Splitting Based on the Gini Index
When a node 𝑝𝑝 is  split into 𝑘𝑘 partitions (children), the quality of the split is  
computed as  a weighted:

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑝𝑝)  −  𝑛𝑛

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(1)  − 𝑛𝑛1 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(2)  −  𝑛𝑛2 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑘𝑘)  − 𝑛𝑛𝑘𝑘
...

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠 =  �
𝑖𝑖

𝑘𝑘 𝑛𝑛𝑖𝑖
𝑛𝑛
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑖𝑖)

where 𝑛𝑛𝑖𝑖 is  the number of records at child 𝑖𝑖, and 𝑛𝑛  is  the number of records at 
node 𝑝𝑝.

Used in the algorithms CART, SLIQ, SPRINT.



Example: Splitting based on the Gini Index

 Effect of weighing partitions: Larger and purer partitions are 
preferred.

B?

Yes No

Node N1 Node N2

 Parent  

C1 6 

C2 6 

Gini = 0.5 

  N1 N2 

C1 5 1 

C2 3 3 

Gini 0.469 0.375 
 

 

Gini(N1) = 1 – (5/8)2 – (3/8)2 = 0.469

Gini(N2) = 1 – (1/4)2 – (3/4)2 = 0.375

Gini of the split
  = 8/12 * 0.469 + 
     4/12 * 0.375
  = 0.438

Gain = 0.5 – 0.438 
         = 0.062

GINI improves !


		

		Parent



		C1

		6



		C2

		6



		Gini = 0.5






		

		N1

		N2



		C1

		5

		1



		C2

		3

		3



		Gini

		0.469

		0.375







Continuous Attributes: Computing Gini Index
 How does the algorithm choose the splitting 

value 𝑣𝑣? (= dynamic discretization)
—Number of possible splitting values 

= Number of distinct values

 Efficient Method: for each attribute,
—Sort the attribute on values
—Linearly scan these values, each time updating 

the count matrix and computing Gini index
—Choose the split position that has  the smallest 

Gini index

𝑣𝑣 = 97𝐾𝐾
Cheat No No No Yes Yes Yes No No No No

Taxable Income

60 70 75 85 90 95 100 120 125 220

55 65 72 80 87 92 97 110 122 172 230
<= > <= > <= > <= > <= > <= > <= > <= > <= > <= > <= >

Yes 0 3 0 3 0 3 0 3 1 2 2 1 3 0 3 0 3 0 3 0 3 0

No 0 7 1 6 2 5 3 4 3 4 3 4 3 4 4 3 5 2 6 1 7 0

Gini 0.420 0.400 0.375 0.343 0.417 0.400 0.300 0.343 0.375 0.400 0.420

Split Pos itions
Sorted Values

Taxabl
e 

income
 > 97K

Yes No



Measures of Node Impurity

Gini Index Entropy Classification 
error



Measure of Impurity: Entropy

 Entropy at a given node t:

𝑝𝑝( 𝑗𝑗 | 𝑡𝑡) is  the relative frequency of class  j at node t; 
0 log(0) ≝ 0 is  used!

 Origin: In information theory, entropy quantifies  the amount of 
uncertainty involved in the value of a random. Here the random variable 
is  the class  label of a randomly chosen observation in a node.

Maximum Impurity: log(𝑛𝑛𝑐𝑐) when records are equally distributed among 
all classes.
Minimum Impurity: 0 when all records belong to one class. We can 

perfectly predict the class  label of each observation in the node. 

Entropy t = −�
𝑗𝑗

𝑝𝑝 𝑗𝑗 𝑡𝑡) log(𝑝𝑝 𝑗𝑗 𝑡𝑡))



Examples: Entropy

C1 0 
C2 6 

 

 

C1 3
C2 3

C1 1 
C2 5 

 

 

P(C1) = 0/6 = 0     P(C2) = 6/6 = 1

Entropy = – 0 log 0 – 1 log 1 = – 0 – 0 = 0 

P(C1) = 1/6          P(C2) = 5/6

Entropy = – (1/6) log2 (1/6) – (5/6) log2 (1/6) = 0.65

P(C1) = 3/6          P(C2) = 3/6

Entropy = – (3/6) log2 (3/6) – (3/6) log2 (3/6) = 1

Entropy t = −�
𝑗𝑗

𝑝𝑝 𝑗𝑗 𝑡𝑡) log(𝑝𝑝 𝑗𝑗 𝑡𝑡))



Splitting based on Information Gain

 Parent Node, 𝑝𝑝 is  split into 𝑘𝑘 partitions;
 𝑛𝑛𝑖𝑖 is  number of records in partition 𝑖𝑖

Measures reduction in Entropy achieved because of the split. 
Choose the split that achieves most reduction (maximizes GAIN)

Used in ID3, C4.5 and C5.0
Disadvantage: Tends to prefer splits  that result in large number of 

partitions, each being small but pure.

𝐺𝐺𝐴𝐴𝐺𝐺𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠 = 𝐸𝐸𝑛𝑛𝑡𝑡𝐸𝐸𝐸𝐸𝑝𝑝𝑦𝑦 𝑝𝑝 − �
𝑖𝑖=1

𝑘𝑘
𝑛𝑛𝑖𝑖
𝑛𝑛
𝐸𝐸𝑛𝑛𝑡𝑡𝐸𝐸𝐸𝐸𝑝𝑝𝑦𝑦(𝑖𝑖)



Splitting based on the Gain Ratio

 Parent Node, 𝑝𝑝 is  split into 𝑘𝑘 partitions;
 𝑛𝑛𝑖𝑖 is  number of records in partition i

 Adjusts  Information Gain by the entropy of the partitioning (SplitInfo). 
Higher entropy partitioning (large number of small partitions) is  
penalized!

 Used in C4.5
 Designed to overcome the disadvantage of Information Gain.

𝐺𝐺𝐺𝐺𝑖𝑖𝑛𝑛𝐺𝐺𝐺𝐺𝑡𝑡𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠 =
𝐺𝐺𝐴𝐴𝐺𝐺𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠
𝑆𝑆𝑝𝑝𝑆𝑆𝑖𝑖𝑡𝑡𝐺𝐺𝑛𝑛𝑓𝑓𝐸𝐸

𝑆𝑆𝑝𝑝𝑆𝑆𝑖𝑖𝑡𝑡𝐺𝐺𝑛𝑛𝑓𝑓𝐸𝐸 = −�
𝑖𝑖=1

𝑘𝑘
𝑛𝑛𝑖𝑖
𝑛𝑛
𝑆𝑆𝐸𝐸𝑙𝑙

𝑛𝑛𝑖𝑖
𝑛𝑛



Measures of Node Impurity

Gini Index Entropy Clas s ification 
e rror



Splitting Criteria based on Classification Error

 Classification error at a node t :

𝑝𝑝( 𝑗𝑗 | 𝑡𝑡) is  the relative frequency of class  𝑗𝑗 at node 𝑡𝑡

 Measures the classification error made in a node by a s imple classifier that 
always predict the majority class  (given by the max(⋅)  in the equation). 

 Maximum Impurity: 1 − 1
𝑛𝑛𝑐𝑐

 when records are equally distributed among all 
classes (maximal error).
 Minimum Impurity: 0 when all records belong to one class  = maximal purity 

(no error)

 Splitting decision: Use weighted averages or gain as  for the other indices to 
make the splitting decision. 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑡𝑡 = 1 − max
𝑖𝑖
𝑝𝑝 𝑖𝑖 𝑡𝑡)



Examples: Classification Error

C1 0 

C2 6 

 

 

C1 3 

C2 3 

 

 

C1 1 

C2 5 

 

 

P(C1) = 0/6 = 0     P(C2) = 6/6 = 1

Error = 1 – max (0, 1) = 1 – 1 = 0 

P(C1) = 1/6          P(C2) = 5/6

Error = 1 – max (1/6, 5/6) = 1 – 5/6 = 1/6

P(C1) = 3/6          P(C2) = 3/6

Error = 1 – max (3/6, 3/6) = 1 – 3/6 = .5

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑡𝑡 = 1 − max
𝑖𝑖
𝑝𝑝 𝑖𝑖 𝑡𝑡)


		C1

		0



		C2

		6






		C1

		3



		C2

		3






		C1

		1



		C2

		5







Comparison among Splitting Criteria
For a 2-class  problem: Probability of the majority class  p is  always > .5

Note : The order is  the same no matter what splitting criterion is  used, 
however, the gain (differences) are not s ince they depend on the slope.

Probability of majority class

unus ed



Tree Induction

Greedy strategy
—Split the records based on an attribute test that optimizes a certain 

criterion.

 Issues
—Determine how to split the record using different attribute types.
—How to determine the best split?
—Determine  when to s top splitting



Stopping Criteria for Tree Induction

 Stop expanding a node when a ll the  records  be long 
to the  s ame c las s  (used Hunt's  algorithm).

 Stop expanding a node when all the records in the 
node have the s ame a ttribute  va lues . Splitting 
becomes impossible.

 Early te rmination crite rion.  Stop when more splits  
will lead to overfitting the training data. We will 
discuss this  later with tree pruning.

Standard 
method



Advantages of Decision Trees

INEXPENSIVE TO 
CONSTRUCT

EXTREMELY FAST AT 
CLASSIFYING 

UNKNOWN RECORDS

EASY TO INTERPRET 
FOR SMALL-SIZED 

TREES

ACCURACY IS 
COMPARABLE TO 

OTHER 
CLASSIFICATION 

TECHNIQUES FOR 
MANY SIMPLE DATA 

SETS



Example: C4.5

 Simple depth-first construction.
Uses Information Gain (improvement of the entropy measure).
Handling both continuous and discrete attributes (continuous 

attributes are split at threshold).
Needs entire data to fit in memory (unsuitable for large datasets).
 Final trees are pruned to remove branches that hurt performance.

Code available at
—http://www.cse.unsw.edu.au/~quinlan/c4.5r8.tar.gz
—Open-Source implementation as  J48 in Weka/rWeka

http://www.cse.unsw.edu.au/%7Equinlan/c4.5r8.tar.gz


Topics

 Introduction
 Decision Trees

—Overview
—Tree Induction

 Overfitting and other Practica l Is s ues
 Model Selection and Evaluation

—Metrics  for Performance Evaluation
—Methods to Obtain Reliable Estimates
—Model Comparison (Relative Performance)

 Feature Selection



Model Selection: Bias vs. Variance

Low    Variance : difference in the model due to s lightly different data.   high

High                 Bias : restrictions by the model class                      Low

Two 
samples 
from the 
same 
function 𝑓𝑓 
(points) with 
the learned 
function ℎ 
(lines).

Consis tency
(fit)

Simplicity
(fewer parameters)

Overfitting 
to training 
data

Note: This  trade-off applies  to any model.



Example: Underfitting and Overfitting
How is  the data 
generated?

500 circular and 500 
triangular data points.

Circular points :
0.5 ≥  𝑠𝑠𝑠𝑠𝐸𝐸𝑡𝑡 𝑥𝑥1

2 + 𝑥𝑥2
2 ≤ 1

Triangular points :

𝑠𝑠𝑠𝑠𝐸𝐸𝑡𝑡 𝑥𝑥1
2 + 𝑥𝑥2

2 <  0.5 or 
𝑠𝑠𝑠𝑠𝐸𝐸𝑡𝑡(𝑥𝑥1

2 + 𝑥𝑥2
2)  >  1



Example: Underfitting and Overfitting

Underfitting: The model is  too s imple, both training and test errors  are large.
Overfitting: The model is  too complicated and starts  memorizing the training data. 
                      Generalization error goes up again.

Resubstitution Error

Generalization Error

Underfitting

Overfitting

Optimal
Complexity



Example: Underfitting due to Insufficient 
Examples

Lack of tra ining data  points  in the  lower ha lf of the  diagram makes  it 
difficult to predic t correctly the  c las s  labe ls  of that region 

test

Training point

Test point



Example: Overfitting due to Noise 

Decis ion boundary is  dis torted to accommodate  a  nois e  point



Training Error vs. Generalization Error

 Training error is  reduced by overfitting and results  in decision 
trees that a re  more  complex than neces s ary.

 Training error does not provide a good estimate of how well the 
tree will perform on new example (e.g., test data).

We need to estimate the Genera liza tion Error expected for new 
data.



Estimating the Generalization Error

Res ubs titution e rror 𝒆𝒆: error on training set
Genera liza tion e rror 𝒆𝒆𝒆: error on testing set

Methods for estimating generalization errors:
1. Optimis tic  approach: assume 𝑒𝑒𝒆 =  𝑒𝑒
2. Pes s imis tic  approach: 

— Estimate as  𝑒𝑒𝒆 =  𝑒𝑒 +  𝐺𝐺 ×  0.5 (𝐺𝐺: number of leaf nodes)
— For a tree with 30 leaf nodes and 10 errors  on training out of 1000 training 

instances:
   Training error 𝑒𝑒 =  10/1000 =  1%
   Estimated generalization error 𝑒𝑒′ =  (10 +  30 𝑥𝑥 0.5)/1000 =  2.5%

3. Validation approach:
— uses  a validation (test) data set (or cross-validation) to estimate the 

generalization error.

Penalty for
model complexity!

0.5 per leave node is  often 
used for binary splits.



Occam’s Razor 
-

The Principle of 
Parsimony

"Simpler is  be tte r"

 Given two models  of s imilar generalization errors, one should 
prefer the s impler model over the more complex model.

 Reason: Complex models  have a greater chance of overfitting. 
I.e., it fitted accidentally errors  in the training data.

There fore, one  should cons ide r a lso mode l complexity when 
evaluating a  mode l.



How to Address Overfitting in Decision Trees

 Full tree  (will overfit)
— Stop if all instances belong to the s ame clas s .
— Stop if all the a ttribute  va lues  a re  the  s ame.

Reduce   overfitting with pre-pruning /  early s topping
— Stop if number of ins tances  is  less  than some user-specified threshold 

(estimates become bad for small sets  of instances).
— Stop if class  distribution of instances are independent of the available 

features  (e.g., using a 𝜒𝜒2 test).
— Stop if expanding the current node does  not improve  impurity 

measures more than a user-specified threshold (e.g., Gini or information 
gain).



How to Address Overfitting in Decision Trees

Reduce  overfitting with pos t-pruning
1. Grow complete decision tree.
2. Try to prune sub-trees of the decision tree in a bottom-up 

fashion.

Options:
—Genera lization error: If generalization error improves after pruning a 

sub-tree, replace the sub-tree by a leaf node with the majority class  of 
the training instances as  the predicted label.

—Penalty for complexity: You can use Maximum Description Length 
(MDL).



Refresher: Minimum Description Length (MDL)

 𝐶𝐶𝐸𝐸𝑠𝑠𝑡𝑡(𝑀𝑀𝐸𝐸𝑀𝑀𝑒𝑒𝑆𝑆) encodes each node (splitting condition and children).
 𝐶𝐶𝐸𝐸𝑠𝑠𝑡𝑡(𝐷𝐷𝐺𝐺𝑡𝑡𝐺𝐺|𝑀𝑀𝐸𝐸𝑀𝑀𝑒𝑒𝑆𝑆) encodes information to correct misclassification errors.

 𝐶𝐶𝐸𝐸𝑠𝑠𝑡𝑡 𝑀𝑀𝐸𝐸𝑀𝑀𝑒𝑒𝑆𝑆,𝐷𝐷𝐺𝐺𝑡𝑡𝐺𝐺 =  𝐶𝐶𝐸𝐸𝑠𝑠𝑡𝑡 𝐷𝐷𝐺𝐺𝑡𝑡𝐺𝐺 𝑀𝑀𝐸𝐸𝑀𝑀𝑒𝑒𝑆𝑆 +  𝐶𝐶𝐸𝐸𝑠𝑠𝑡𝑡 𝑀𝑀𝐸𝐸𝑀𝑀𝑒𝑒𝑆𝑆 → 𝑚𝑚𝑖𝑖𝑛𝑛 
—Cost is  the number of bits  needed for encoding.

A B

A?

B?

C?

10

0

1

Yes No

B1 B2

C1 C2

X y
X1 1
X2 0
X3 0
X4 1
… …
Xn 1

X y
X1 ?
X2 ?
X3 ?
X4 ?
… …
Xn ?mistakes

𝐶𝐶𝐸𝐸𝑠𝑠𝑡𝑡(𝑀𝑀𝐸𝐸𝑀𝑀𝑒𝑒𝑆𝑆)

𝐶𝐶𝐸𝐸𝑠𝑠𝑡𝑡(𝐷𝐷𝐺𝐺𝑡𝑡𝐺𝐺|𝑀𝑀𝐸𝐸𝑀𝑀𝑒𝑒𝑆𝑆)

Penalty for
model complexity! 

This is  equivalent to 
the pessimistic 

generalization error.



Example: Post-Pruning

A?

A1

A2 A3

A4

Class = Yes 20

Class = No 10
Error = 10/30

Before  split:
Training Error = 10/30
Pessimistic error = (10 + 1 x 0.5)/30 = 10.5/30

Afte r split:
Training Error = 9/30
Pessimistic error = (9 + 4 x 0.5)/30 = 11/30

Class = Yes 8
Class = No 4

Class = Yes 3
Class = No 4

Class = Yes 4
Class = No 1

Class = Yes 5
Class = No 1

Error = 9/30

Training error decreases but 
pessimistic error estimate increases! PRUNE!



Other issues:
Data Fragmentation and Search Strategy

Data  Fragmentation
Number of instances gets  smaller as  you traverse down the tree 

and can become too small to make a statistically s ignificant 
decision (splitting or determining the class  in a leaf node)

→ Many algorithms s top when a  node  has  not enough ins tances .

Search Stra tegy
 Finding an optimal decision tree is  NP-hard
→ Most algorithm use a greedy, top-down, recurs ive  partitioning 
s tra tegy to induce a reasonable solution.



Other issues: Tree Replication

P

Q R

S 0 1

0 1

Q

S 0

0 1

  Same subtree appears  in multiple branches.

  Makes the model more complicated and harder to interpret. 



Decision Boundary of a Classifier

 The border line between two neighboring regions of different classes  is  known as the decis ion boundary.

 The decis ion boundary of decis ion trees  is  parallel to the axes because each test condition represents  a 
threshold on a s ingle attribute.

 Not expressive enough for modeling continuous variables  directly. Discretization is  performed for the 
splits.



Oblique Decision Trees

x + y < 1

Clas s  = + Clas s  =     

 The test condition may involve multiple attributes.

 More expressive representation.

 Finding the optimal test condition is  computationally 
expensive! 

Not us ed in practice  for decis ion 
trees  but Linear Discriminant Analysis  
(LDA) can learn a s ingle oblique 
decis ion boundary.
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Metrics for Performance Evaluation: 
Confusion Matrix
 Focuses on the predictive capability of a model (not speed, scalability, etc.)
 For s implicity, we will present a binary classification problem here, but most 

measures generalize to multi-class  problems.

PREDICTED CLASS

ACTUAL
CLASS

Class=Yes Class=No

Class=Yes a  
(TP)

b 
(FN)

Class=No c 
(FP)

d 
(TN)

a: TP (true  pos itive)

b: FN (fa ls e  negative)

c: FP (fa ls e  pos itive)

d: TN (true  negative)

Confusion Matrix



Metrics for Performance Evaluation:
Statistical Test

From Statistics: Null Hypotheses 𝐻𝐻𝐻 is  that the actual class  is  Yes.

PREDICTED CLASS

ACTUAL
CLASS

Class=Yes Class=No

Class=Yes Type  I e rror
(FN)

Class=No Type  II 
e rror
(FP)

Type I error: 𝑃𝑃(NO | 𝐻𝐻𝐻 is true)  → Significance level 𝛼𝛼
Type II error:       𝑃𝑃(Yes | 𝐻𝐻𝐻 is false) → Power 1 − 𝛽𝛽

𝐻𝐻𝐻



Metrics for Performance Evaluation:
Accuracy
Most widely-used metric: 
How many do we predict correct (in percent)?

PREDICTED CLASS

ACTUAL
CLASS

Class=Yes Class=No

Class=Yes a
(TP)

b
(FN)

Class=No c
(FP)

d
(TN)

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐸𝐸𝐺𝐺𝐴𝐴𝑦𝑦 =
𝐺𝐺 + 𝑀𝑀

𝐺𝐺 + 𝑏𝑏 + 𝐴𝐴 + 𝑀𝑀
=
𝑇𝑇𝑃𝑃 + 𝑇𝑇𝐺𝐺

𝐺𝐺



Limitation of Accuracy

Consider a 2-class  problem with a total population of
—Number of Class  0 examples = 9990
—Number of Class  1 examples = 10

A model that predicts  everything to be class  0, has an accuracy of 
9990/10000 =  99.9 %

Accuracy is  misleading because the model does not detect any 
class  1 example!

→ This is  a very common problem called the 
c las s  imbalance  problem

It is  best to 
always say 

Class  0



Cost Matrix

PREDICTED CLASS

ACTUAL
CLASS

C(i|j) Clas s =Yes Clas s =No

Clas s =Yes C(Yes|Yes) C(No|Yes)

Clas s =No C(Yes|No) C(No|No)

𝐶𝐶 𝑖𝑖 𝑗𝑗): Cost of misclassifying class  𝑗𝑗 example as  class  𝑖𝑖

Different types of error can have different cost!



Computing the Cost of Classification
Cost 

Matrix
PREDICTED CLASS

ACTUAL
CLASS

C(i|j) + -
+ -1 100
- 1 0

Model M1 PREDICTED CLASS

ACTUAL
CLASS

+ -

+ 150 40
- 60 250

Model M2 PREDICTED CLASS

ACTUAL
CLASS

+ -

+ 250 45
- 5 200

Accuracy = 80%
Cost = -1*150+100*40+ 

1*60+0*250 = 3910

Accuracy = 90%
Cost = 4255

Missing a ‘+’ case is
really expensive!



Cost-Biased Measures 
(from Information Retrieval)

 Precision only considers cost for examples predicted as Yes.
 Recall only considers cost for examples that are truly Yes.
 F-measure combines precision and recall and ignores d.

PREDICTED CLASS

ACTUAL
CLASS

Class
Yes

Class
No

Class
Yes

a
(TP)

b
(FN)

Class
No

c
(FP)

d
(TN)

𝑃𝑃𝐸𝐸𝑒𝑒𝐴𝐴𝑖𝑖𝑠𝑠𝑖𝑖𝐸𝐸𝑛𝑛 𝑝𝑝 =
𝐺𝐺

𝐺𝐺 + 𝐴𝐴
𝐺𝐺𝑒𝑒𝐴𝐴𝐺𝐺𝑆𝑆𝑆𝑆 𝐸𝐸 =

𝐺𝐺
𝐺𝐺 + 𝑏𝑏

𝐹𝐹 −𝑚𝑚𝑒𝑒𝐺𝐺𝑠𝑠𝐴𝐴𝐸𝐸𝑒𝑒 𝐹𝐹 =
2𝐸𝐸𝑝𝑝
𝐸𝐸 + 𝑝𝑝

=
2𝐺𝐺

2𝐺𝐺 + 𝑏𝑏 + 𝐴𝐴



Kappa Statistic PREDICTED CLASS

ACTUAL
CLASS

Class
Yes

Class
No

Class
Yes

a
(TP)

b
(FN)

Class
No

c
(FP)

d
(TN)

Idea: Compare the accuracy of the 
classifier with a random clas s ifie r. 
The classifier should be better than 
random!

𝜅𝜅 =
total accuracy − random accuracy

1 − random accuracy

total accuracy =
𝑇𝑇𝑃𝑃 + 𝑇𝑇𝐺𝐺

𝐺𝐺
random accuracy =

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃 × 𝑇𝑇𝐺𝐺 + 𝐹𝐹𝐺𝐺 + 𝐹𝐹𝐺𝐺 + 𝑇𝑇𝐺𝐺 × 𝐹𝐹𝑃𝑃 + 𝑇𝑇𝑃𝑃
𝐺𝐺2



Receiver Operating 
Characteristic 
(ROC)

 Developed in 1950s for s ignal detection 
theory to analyze noisy s ignals  to 
characterize the trade-off between positive 
hits  and false alarms.

 Works only for binary classification (two-
class  problems).

 ROC curve plots  TPR (true positive rate) on 
the y-axis  against FPR (false positive rate) 
on the x-axis.

 Performance of each classifier represented 
as  a point. Changing the threshold of the 
algorithm, sample distribution or cost 
matrix changes the location of the point 
and forms a curve.



ROC Curve
 Example with 1-dimensional data set containing 2 classes (positive and negative)
 Any points located at x > t is classified as positive

FPR=0.12

TPR=0.5

 Move t to get the other points on the ROC curve.

Pr
ob

t

ROC

At threshold t:
TPR=0.5, FNR=0.5, FPR=0.12, FNR=0.88



ROC Curve

(TPR,FPR):
 (0,0): declare everything

          to be negative class
 (1,1): declare everything

         to be positive class
 (1,0): ideal

Diagonal line:
—Random guessing
—Below diagonal line: 

prediction is  opposite of the 
true class

Ideal 
Classifier

Random 
Guessing Line

Below the diagonal: 
predict the opposite class



Using ROC for Model Comparison

No model consistently 
outperform the other
-M1 is  better for small FPR
-M2 is  better for large FPR

Area  Under the  ROC curve  
(AUC)
-Ideal: 

•  AUC = 1
-Random guess:

•  AUC = 0.5



Topics

 Introduction
 Decision Trees

—Overview
—Tree Induction

 Overfitting and other Practical Issues
 Model Selection and Evaluation

—Metrics  for Performance Evaluation
—Methods  to Obta in Reliable  Es timates
—Model Comparison (Relative Performance)

 Feature Selection



Training data s ize (log scale)

Variation 
for different 

runs

Learning Curve

Learning curve shows 
how accuracy on 
unseen examples 
changes with 
varying training 
sample s ize

Accuracy and variance between runs depend on the s ize of the training data.



Estimating the Generalization Error 
Using Test Data

 To estimate generalization error we need to 
separate the data into a set to train and a set to 
test.

Holdout tes ting/Random s plits : Split the data 
randomly into, e.g., 80% training and 20% 
testing.

Very important: the algorithm can never look at 
the test set during learning! Test

Data

Training
Data



𝑘𝑘-fold Cross 
Validation

shuffle

1
2
3
4
5
6
7
8
9

10

model
train

test

Error on fold 10
Error on fold   9
Error on fold   8
Error on fold   7
.
.
.
Error on fold   1

Data Folds

Average
Error

k-fold cros s  va lidation: Use data better to estimate the 
generalization error:

 Split the data randomly into k folds.
 For 𝑘𝑘 rounds hold 1 fold back for testing and 

use the remaining 𝑘𝑘 − 1 folds  for training.
 Use the average of the error/accuracy as  a 

better estimate.
 Some algorithms/tools do that internally.



Training and Testing with Hyperparameters

Hyperparamete rs : Many algorithms allow choices for 
learning. E.g., 

—maximal decision tree depth
—selected features

We do not want to overfit the hyperparameters!!!
Use a generalization error estimate twice:
1. Tra in: Learn models  on the tra ining data  (without 

the validation data) using different 
hyperparameters.

—A grid of possible hyperparameter combinations 
—greedy search 

2. Model Se lec tion: Evaluate the models  using the 
va lidation data  and choose the hyperparameters  
with the best accuracy. Rebuild the model using all 
the training data.

3. Tes t the final model using the tes t data .

Test
Data

Training
Data

Validation
Data



Typical Data Use with Model Selection

Test
Data

Training
Data

Validation
Data

Tes t data : Split the data 
randomly into 20% 
testing and 80% training 
+ validation.

Model Se lection: Use 
training & validation 
data  with 10-fold cross  
validation for choosing 
between models  and 
hyper parameter 
tuning.



Confidence Interval for Accuracy

 The observed accuracy is  an es timate  of the true accuracy of the model. 
How good is  the estimate?

 Each prediction can be regarded as  a Bernoulli tria l: A Bernoulli trial (a 
biased coin toss) has  2 possible outcomes:
   heads (correct) or tails  (wrong)

We use 𝑝𝑝 for the true chance that a prediction is  correct (= true accuracy).

 Predictions for a test set of s ize 𝐺𝐺 are a collection of 𝐺𝐺 Bernoulli trials. The 
number of correct predictions 𝑥𝑥 has  a Binomial dis tribution: 

𝑋𝑋 ~ 𝐵𝐵𝑖𝑖𝑛𝑛𝐸𝐸𝑚𝑚𝑖𝑖𝐺𝐺𝑆𝑆 𝐺𝐺, 𝑝𝑝

 Example: Toss  a fair coin 50 times, how many heads would turn up? 
Expected number of heads 𝐸𝐸[𝑋𝑋] =  𝐺𝐺𝑝𝑝 =  50 ×  0.5 =  25

 Application for Accuracy: If we observe 𝑥𝑥 correct predictions then the 
observed accuracy is

�̂�𝑝 = 𝑥𝑥/𝐺𝐺 

Can we give bounds for the true accuracy of model 𝑝𝑝?



Confidence Interval 
for Accuracy
For large test sets  (𝐺𝐺 >  30) we 
can approximate the Binomial 
distribution 

𝑋𝑋 ~ 𝐵𝐵𝑖𝑖𝑛𝑛𝐸𝐸𝑚𝑚𝑖𝑖𝐺𝐺𝑆𝑆 𝐺𝐺, 𝑝𝑝

by a Normal distribution: 

𝑋𝑋 ~ 𝐺𝐺𝐸𝐸𝐸𝐸𝑚𝑚𝐺𝐺𝑆𝑆(𝐺𝐺𝑝𝑝,𝐺𝐺𝑝𝑝 1 − 𝑝𝑝 )

Confidence Interval for 𝑝𝑝 = 𝑋𝑋
𝑁𝑁

 
(Wald Method):

�̂�𝑝 ± 𝑧𝑧𝛼𝛼/2
�̂�𝑝 1 − �̂�𝑝

𝐺𝐺

𝐴𝐴𝐸𝐸𝑒𝑒𝐺𝐺 =  1 − 𝛼𝛼

−𝑧𝑧𝛼𝛼/2 𝑧𝑧𝛼𝛼/2



Confidence Interval for Accuracy

Consider a model that produces an accuracy of 80% when 
evaluated on 100 test instances:

1. 𝐺𝐺 =  100, 𝐺𝐺𝐴𝐴𝐴𝐴 =  0.8
2. Let 1 − 𝛼𝛼 =  0.95 (95% confidence)
3. Find the critical value for the normal distribution.

 𝑧𝑧𝛼𝛼/2  = 1.96 
4. Calculate the interval around the accuracy.

1 − 𝛼𝛼/2 𝑧𝑧𝛼𝛼/2

0.99 2.58
0.98 2.33
0.95 1.96
0.90 1.65

Table or 
R 𝑠𝑠𝑛𝑛𝐸𝐸𝐸𝐸𝑚𝑚(1 − 𝛼𝛼/2)

�̂�𝑝 ± 𝑧𝑧𝛼𝛼/2
�̂�𝑝 1 − �̂�𝑝

𝐺𝐺 = �0.722
0.878

Data mining tools  typically calculate this  for us.
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Comparing Performance between 2 Models

Given two models, say 𝑀𝑀1 and 𝑀𝑀2, which is  better? This  is  a statistical model s e lec tion 
problem.

For large test sets  (𝐺𝐺 >  30) we can approximate the observed accuracies  (sampled 
from a Binomial distribution) using the true but unknown model accuracies  𝑝𝑝1 and 𝑝𝑝2:

𝐺𝐺𝐴𝐴𝐴𝐴1 ~ 𝐺𝐺𝐸𝐸𝐸𝐸𝑚𝑚𝐺𝐺𝑆𝑆(𝐺𝐺𝑝𝑝1,𝐺𝐺𝑝𝑝1 1 − 𝑝𝑝1 )
𝐺𝐺𝐴𝐴𝐴𝐴2 ~ 𝐺𝐺𝐸𝐸𝐸𝐸𝑚𝑚𝐺𝐺𝑆𝑆(𝐺𝐺𝑝𝑝2,𝐺𝐺𝑝𝑝2(1 − 𝑝𝑝2))

Perform a paired t-test with:
H0: There is  no difference between the observed accuracies  of the models.
H1: There is  a difference.

Notes
 Hyperparameter tuning is  also a model selection problem.
 Comparing more than two models : You need to correct for multiple  comparis ons ! 

For example, using Bonferroni correction or False Discovery Rate (FDR).
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Feature Selection

Univariate feature importance 
score

• Measures how related each 
feature is  to the class  
variable.

• E.g., chi-squared statistic, 
information gain.

Feature subset selection

• Tries to find the best set of 
features. 

• Often uses a black box 
approach where different 
subsets  are evaluated using 
a greedy search strategy.

• E.g.: Stepwise backward 
selection tries  to remove one 
feature at a time.

What features should be used in the model?



Conclusion

 Classification is  s upervis ed learning with the 
goal to find a model that predicts  well (i.e., has a 
low generalization error).

 Generalization e rror can be estimated using test 
sets /cross-validation and should be used for 
model selection.

 Model evaluation and comparison needs to take 
model complexity into account.
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