8 Regression*

Regression is a statistical method that is not covered in out textbook in the Appendix. It is is important for data mining, that we have added this extra chapter here. We introduce the regression problem and multiple linear regression. In addition, alternative models like regression trees and regularized regression are discussed.

Packages Used in this Chapter

pkgs <- c('lars', 'rpart', 'rpart.plot')
  
pkgs_install <- pkgs[!(pkgs %in% installed.packages()[,"Package"])]
if(length(pkgs_install)) install.packages(pkgs_install)

The packages used for this chapter are:

8.1 Introduction

Recall that classification predicts one of a small set of discrete (i.e., nominal) labels (e.g., yes or no, small, medium or large). Regression is also a supervised learning problem, but the goal is to predict the value of a continuous value given a set of predictors. We start with the popular linear regression and will later discuss alternative regression methods.

Linear regression models the value of a dependent variable \(y\) (also called the response) as as linear function of independent variables \(X_1, X_2, ..., X_p\) (also called the regressors, predictors, exogenous variables, explanatory variables, or covariates). If we use more than one explanatory variable, then we often call this multiple or multivariate linear regression. The linear regression model is: \[\hat{y}_i = f(\mathbf{x}_i) = \beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip} + \epsilon_i = \beta_0 + \sum_{j = 1}^p{(\beta_jx_{ij} + \epsilon_i)},\]

where \(\beta_0\) is the intercept, \(\boldsymbol{\beta}\) is a \(p+1\)-dimensional parameter vector learned from the data, and \(\epsilon\) is the error term (called the residuals). This is often also written in vector notation as \[\hat{\mathbf{y}} = \mathbf{X} \boldsymbol{\beta} + \epsilon,\] where \(\hat{\mathbf{y}}\) and \(\boldsymbol{\beta}\) are vectors and \(\mathbf{X}\) is the matrix with the covariates (called the design matrix).

The error that is often minimized in regression problems is the squared error defined as:

\[SE= \sum_i (y_i - f(\mathbf{x}_i))^2\]

The parameter vector is found by minimizing the squared error the training data.

Linear regression makes several assumptions that should be checked:

  • Linearity: There is a linear relationship between dependent and independent variables.
  • Homoscedasticity: The variance of the error (\(\epsilon\)) does not change (increase) with the predicted value.
  • Independence of errors: Errors between observations are uncorrelated.
  • No multicollinearity of predictors: Predictors cannot be perfectly correlated or the parameter vector cannot be identified. Note that highly correlated predictors lead to unstable results and should be avoided using, e.g., variable selection.

8.2 A First Linear Regression Model

We will use the Iris datasets and try to predict the Petal.Width using the other variables. We first load and shuffle data since the flowers in the dataset are in order by species.

data(iris)
set.seed(2000) # make the sampling reproducible

x <- iris[sample(1:nrow(iris)),]
plot(x, col=x$Species)

The iris data is very clean, so we make the data a little messy by adding a random error to each variable and introduce a useless, completely random feature.

x[,1] <- x[,1] + rnorm(nrow(x))
x[,2] <- x[,2] + rnorm(nrow(x))
x[,3] <- x[,3] + rnorm(nrow(x))
x <- cbind(x[,-5], 
           useless = mean(x[,1]) + rnorm(nrow(x)), 
           Species = x[,5])

plot(x, col=x$Species)
summary(x)
##   Sepal.Length   Sepal.Width     Petal.Length   
##  Min.   :2.68   Min.   :0.611   Min.   :-0.713  
##  1st Qu.:5.05   1st Qu.:2.306   1st Qu.: 1.876  
##  Median :5.92   Median :3.171   Median : 4.102  
##  Mean   :5.85   Mean   :3.128   Mean   : 3.781  
##  3rd Qu.:6.70   3rd Qu.:3.945   3rd Qu.: 5.546  
##  Max.   :8.81   Max.   :5.975   Max.   : 7.708  
##   Petal.Width     useless           Species  
##  Min.   :0.1   Min.   :2.92   setosa    :50  
##  1st Qu.:0.3   1st Qu.:5.23   versicolor:50  
##  Median :1.3   Median :5.91   virginica :50  
##  Mean   :1.2   Mean   :5.88                  
##  3rd Qu.:1.8   3rd Qu.:6.57                  
##  Max.   :2.5   Max.   :8.11
head(x)
##     Sepal.Length Sepal.Width Petal.Length Petal.Width
## 85         2.980       1.464        5.227         1.5
## 104        5.096       3.044        5.187         1.8
## 30         4.361       2.832        1.861         0.2
## 53         8.125       2.406        5.526         1.5
## 143        6.372       1.565        6.147         1.9
## 142        6.526       3.697        5.708         2.3
##     useless    Species
## 85    5.712 versicolor
## 104   6.569  virginica
## 30    4.299     setosa
## 53    6.124 versicolor
## 143   6.553  virginica
## 142   5.222  virginica

We split the data into training and test data. Since the data is shuffled, we effectively perform holdout sampling. This is often not done in statistical applications, but we use the machine learning approach here.

train <- x[1:100,]
test <- x[101:150,]

Linear regression is done in R using the lm() (linear model) function which is part of the R core package stats. Like other modeling functions in R, lm() uses a formula interface. Here we create a formula to predict Petal.Width by all other variables other than Species.

model1 <- lm(Petal.Width ~ Sepal.Length
            + Sepal.Width + Petal.Length + useless,
            data = train)
model1
## 
## Call:
## lm(formula = Petal.Width ~ Sepal.Length + Sepal.Width + Petal.Length + 
##     useless, data = train)
## 
## Coefficients:
##  (Intercept)  Sepal.Length   Sepal.Width  Petal.Length  
##     -0.20589       0.01957       0.03406       0.30814  
##      useless  
##      0.00392

The result is a model with the fitted \(\beta\) coefficients. More information can be displayed using the summary function.

summary(model1)
## 
## Call:
## lm(formula = Petal.Width ~ Sepal.Length + Sepal.Width + Petal.Length + 
##     useless, data = train)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.0495 -0.2033  0.0074  0.2038  0.8564 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -0.20589    0.28723   -0.72     0.48    
## Sepal.Length  0.01957    0.03265    0.60     0.55    
## Sepal.Width   0.03406    0.03549    0.96     0.34    
## Petal.Length  0.30814    0.01819   16.94   <2e-16 ***
## useless       0.00392    0.03558    0.11     0.91    
## ---
## Signif. codes:  
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.366 on 95 degrees of freedom
## Multiple R-squared:  0.778,  Adjusted R-squared:  0.769 
## F-statistic: 83.4 on 4 and 95 DF,  p-value: <2e-16

The summary shows:

  • Which coefficients are significantly different from 0. Here only Petal.Length is significant and the coefficient for useless is very close to 0. Look at the scatter plot matrix above and see why this is the case.
  • R-squared (coefficient of determination): Proportion (in the range \([0,1]\)) of the variability of the dependent variable explained by the model. It is better to look at the adjusted R-square (adjusted for number of dependent variables). Typically, an R-squared of greater than \(0.7\) is considered good, but this is just a rule of thumb and we should rather use a test set for evaluation.

Plotting the model produces diagnostic plots (see plot.lm()). For example, to check that the error term has a mean of 0 and is homoscedastic, the residual vs. predicted value scatter plot should have a red line that stays clode to 0 and not look like a funnel where they are increasing when the fitted values increase. To check if the residuals are approximately normally distributed, the Q-Q plot should be close to the straight diagonal line.

plot(model1, which = 1:2)

In this case, the two plots look fine.

8.3 Comparing Nested Models

Here we perform model selection to compare several linear models. Nested means that all models use a subset of the same set of features. We create a simpler model by removing the feature useless from the model above.

model2 <- lm(Petal.Width ~ Sepal.Length + 
               Sepal.Width + Petal.Length,
             data = train)
summary(model2)
## 
## Call:
## lm(formula = Petal.Width ~ Sepal.Length + Sepal.Width + Petal.Length, 
##     data = train)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.0440 -0.2024  0.0099  0.1998  0.8513 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   -0.1842     0.2076   -0.89     0.38    
## Sepal.Length   0.0199     0.0323    0.62     0.54    
## Sepal.Width    0.0339     0.0353    0.96     0.34    
## Petal.Length   0.3080     0.0180   17.07   <2e-16 ***
## ---
## Signif. codes:  
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.365 on 96 degrees of freedom
## Multiple R-squared:  0.778,  Adjusted R-squared:  0.771 
## F-statistic:  112 on 3 and 96 DF,  p-value: <2e-16

We can remove the intercept by adding -1 to the formula.

model3 <- lm(Petal.Width ~ Sepal.Length + 
               Sepal.Width + Petal.Length - 1,
             data = train)
summary(model3)
## 
## Call:
## lm(formula = Petal.Width ~ Sepal.Length + Sepal.Width + Petal.Length - 
##     1, data = train)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.0310 -0.1961 -0.0051  0.2264  0.8246 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## Sepal.Length -0.00168    0.02122   -0.08     0.94    
## Sepal.Width   0.01859    0.03073    0.61     0.55    
## Petal.Length  0.30666    0.01796   17.07   <2e-16 ***
## ---
## Signif. codes:  
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.364 on 97 degrees of freedom
## Multiple R-squared:  0.938,  Adjusted R-squared:  0.936 
## F-statistic:  486 on 3 and 97 DF,  p-value: <2e-16

Here is a very simple model.

model4 <- lm(Petal.Width ~ Petal.Length -1,
             data = train)
summary(model4)
## 
## Call:
## lm(formula = Petal.Width ~ Petal.Length - 1, data = train)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.9774 -0.1957  0.0078  0.2536  0.8455 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## Petal.Length  0.31586    0.00822    38.4   <2e-16 ***
## ---
## Signif. codes:  
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.362 on 99 degrees of freedom
## Multiple R-squared:  0.937,  Adjusted R-squared:  0.936 
## F-statistic: 1.47e+03 on 1 and 99 DF,  p-value: <2e-16

We need a statistical test to compare all these nested models. The appropriate test is called ANOVA (analysis of variance) which is a generalization of the t-test to check if all the treatments (i.e., models) have the same effect. Important note: This only works for nested models. Models are nested only if one model contains all the predictors of the other model.

anova(model1, model2, model3, model4)
## Analysis of Variance Table
## 
## Model 1: Petal.Width ~ Sepal.Length + Sepal.Width + Petal.Length + useless
## Model 2: Petal.Width ~ Sepal.Length + Sepal.Width + Petal.Length
## Model 3: Petal.Width ~ Sepal.Length + Sepal.Width + Petal.Length - 1
## Model 4: Petal.Width ~ Petal.Length - 1
##   Res.Df  RSS Df Sum of Sq    F Pr(>F)
## 1     95 12.8                         
## 2     96 12.8 -1   -0.0016 0.01   0.91
## 3     97 12.9 -1   -0.1046 0.78   0.38
## 4     99 13.0 -2   -0.1010 0.38   0.69

Models 1 is not significantly better than model 2. Model 2 is not significantly better than model 3. Model 3 is not significantly better than model 4! Use model 4, the simplest model. See anova.lm() for the manual page for ANOVA for linear models.

8.4 Stepwise Variable Selection

Stepwise variable section performs backward (or forward) model selection for linear models and uses the smallest AIC (Akaike information criterion) to decide what variable to remove and when to stop.

s1 <- step(lm(Petal.Width ~ . -Species, data = train))
## Start:  AIC=-195.9
## Petal.Width ~ (Sepal.Length + Sepal.Width + Petal.Length + useless + 
##     Species) - Species
## 
##                Df Sum of Sq  RSS    AIC
## - useless       1       0.0 12.8 -197.9
## - Sepal.Length  1       0.0 12.8 -197.5
## - Sepal.Width   1       0.1 12.9 -196.9
## <none>                      12.8 -195.9
## - Petal.Length  1      38.6 51.3  -58.7
## 
## Step:  AIC=-197.9
## Petal.Width ~ Sepal.Length + Sepal.Width + Petal.Length
## 
##                Df Sum of Sq  RSS    AIC
## - Sepal.Length  1       0.1 12.8 -199.5
## - Sepal.Width   1       0.1 12.9 -198.9
## <none>                      12.8 -197.9
## - Petal.Length  1      38.7 51.5  -60.4
## 
## Step:  AIC=-199.5
## Petal.Width ~ Sepal.Width + Petal.Length
## 
##                Df Sum of Sq  RSS    AIC
## - Sepal.Width   1       0.1 12.9 -200.4
## <none>                      12.8 -199.5
## - Petal.Length  1      44.7 57.5  -51.3
## 
## Step:  AIC=-200.4
## Petal.Width ~ Petal.Length
## 
##                Df Sum of Sq  RSS    AIC
## <none>                      12.9 -200.4
## - Petal.Length  1      44.6 57.6  -53.2
summary(s1)
## 
## Call:
## lm(formula = Petal.Width ~ Petal.Length, data = train)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.9848 -0.1873  0.0048  0.2466  0.8343 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    0.0280     0.0743    0.38     0.71    
## Petal.Length   0.3103     0.0169   18.38   <2e-16 ***
## ---
## Signif. codes:  
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.364 on 98 degrees of freedom
## Multiple R-squared:  0.775,  Adjusted R-squared:  0.773 
## F-statistic:  338 on 1 and 98 DF,  p-value: <2e-16

Each table represents one step and shows the AIC when each variable is removed and the one with the smallest AIC (in the first table useless) is removed. It stops with a small model that only uses Petal.Length.

8.5 Modeling with Interaction Terms

Linear regression models the effect of each predictor separately using a \(\beta\) coefficient. What if two variables are only important together? This is called an interaction between predictors and is modeled using interaction terms. In R’s formula() we can use : and * to specify interactions. For linear regression, an interaction means that a new predictor is created by multiplying the two original predictors.

We can create a model with an interaction terms between Sepal.Length, Sepal.Width and Petal.Length.

model5 <- step(lm(Petal.Width ~ Sepal.Length * 
                    Sepal.Width * Petal.Length,
             data = train))
## Start:  AIC=-196.4
## Petal.Width ~ Sepal.Length * Sepal.Width * Petal.Length
## 
##                                         Df Sum of Sq  RSS
## <none>                                               11.9
## - Sepal.Length:Sepal.Width:Petal.Length  1     0.265 12.2
##                                          AIC
## <none>                                  -196
## - Sepal.Length:Sepal.Width:Petal.Length -196
summary(model5)
## 
## Call:
## lm(formula = Petal.Width ~ Sepal.Length * Sepal.Width * Petal.Length, 
##     data = train)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.1064 -0.1882  0.0238  0.1767  0.8577 
## 
## Coefficients:
##                                       Estimate Std. Error
## (Intercept)                            -2.4207     1.3357
## Sepal.Length                            0.4484     0.2313
## Sepal.Width                             0.5983     0.3845
## Petal.Length                            0.7275     0.2863
## Sepal.Length:Sepal.Width               -0.1115     0.0670
## Sepal.Length:Petal.Length              -0.0833     0.0477
## Sepal.Width:Petal.Length               -0.0941     0.0850
## Sepal.Length:Sepal.Width:Petal.Length   0.0201     0.0141
##                                       t value Pr(>|t|)  
## (Intercept)                             -1.81    0.073 .
## Sepal.Length                             1.94    0.056 .
## Sepal.Width                              1.56    0.123  
## Petal.Length                             2.54    0.013 *
## Sepal.Length:Sepal.Width                -1.66    0.100 .
## Sepal.Length:Petal.Length               -1.75    0.084 .
## Sepal.Width:Petal.Length                -1.11    0.272  
## Sepal.Length:Sepal.Width:Petal.Length    1.43    0.157  
## ---
## Signif. codes:  
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.36 on 92 degrees of freedom
## Multiple R-squared:  0.792,  Adjusted R-squared:  0.777 
## F-statistic: 50.2 on 7 and 92 DF,  p-value: <2e-16
anova(model5, model4)
## Analysis of Variance Table
## 
## Model 1: Petal.Width ~ Sepal.Length * Sepal.Width * Petal.Length
## Model 2: Petal.Width ~ Petal.Length - 1
##   Res.Df  RSS Df Sum of Sq    F Pr(>F)
## 1     92 11.9                         
## 2     99 13.0 -7     -1.01 1.11   0.36

Some interaction terms are significant in the new model, but ANOVA shows that model 5 is not significantly better than model 4

8.6 Prediction

We preform here a prediction for the held out test set.

test[1:5,]
##     Sepal.Length Sepal.Width Petal.Length Petal.Width
## 128        8.017       1.541        3.515         1.8
## 92         5.268       4.064        6.064         1.4
## 50         5.461       4.161        1.117         0.2
## 134        6.055       2.951        4.599         1.5
## 8          4.900       5.096        1.086         0.2
##     useless    Species
## 128   6.110  virginica
## 92    4.938 versicolor
## 50    6.373     setosa
## 134   5.595  virginica
## 8     7.270     setosa
test[1:5,]$Petal.Width
## [1] 1.8 1.4 0.2 1.5 0.2
predict(model4, test[1:5,])
##    128     92     50    134      8 
## 1.1104 1.9155 0.3529 1.4526 0.3429

The most used error measure for regression is the RMSE root-mean-square error.

RMSE <- function(predicted, true) mean((predicted-true)^2)^.5

RMSE(predict(model4, test), test$Petal.Width)
## [1] 0.3874

We can also visualize the quality of the prediction using a simple scatter plot of predicted vs. actual values.

plot(test[,"Petal.Width"], predict(model4, test),
  xlim=c(0,3), ylim=c(0,3), 
  xlab = "actual", ylab = "predicted",
  main = "Petal.Width")
abline(0,1, col="red")
cor(test[,"Petal.Width"], predict(model4, test))
## [1] 0.8636

Perfect predictions would be on the red line, the farther they are away, the larger the error.

8.7 Using Nominal Variables

Dummy variables also called one-hot encoding in machine learning is used for factors (i.e., levels are translated into individual 0-1 variable). The first level of factors is automatically used as the reference and the other levels are presented as 0-1 dummy variables called contrasts.

levels(train$Species)
## [1] "setosa"     "versicolor" "virginica"

model.matrix() is used internally to create dummy variables when the design matrix for the regression is created..

head(model.matrix(Petal.Width ~ ., data=train))
##     (Intercept) Sepal.Length Sepal.Width Petal.Length
## 85            1        2.980       1.464        5.227
## 104           1        5.096       3.044        5.187
## 30            1        4.361       2.832        1.861
## 53            1        8.125       2.406        5.526
## 143           1        6.372       1.565        6.147
## 142           1        6.526       3.697        5.708
##     useless Speciesversicolor Speciesvirginica
## 85    5.712                 1                0
## 104   6.569                 0                1
## 30    4.299                 0                0
## 53    6.124                 1                0
## 143   6.553                 0                1
## 142   5.222                 0                1

Note that there is no dummy variable for species Setosa, because it is used as the reference (when the other two dummy variables are 0). It is often useful to set the reference level. A simple way is to use the function relevel() to change which factor is listed first.

Let us perform model selection using AIC on the training data and then evaluate the final model on the held out test set to estimate the generalization error.

model6 <- step(lm(Petal.Width ~ ., data=train))
## Start:  AIC=-308.4
## Petal.Width ~ Sepal.Length + Sepal.Width + Petal.Length + useless + 
##     Species
## 
##                Df Sum of Sq   RSS  AIC
## - Sepal.Length  1      0.01  3.99 -310
## - Sepal.Width   1      0.01  3.99 -310
## - useless       1      0.02  4.00 -310
## <none>                       3.98 -308
## - Petal.Length  1      0.47  4.45 -299
## - Species       2      8.78 12.76 -196
## 
## Step:  AIC=-310.2
## Petal.Width ~ Sepal.Width + Petal.Length + useless + Species
## 
##                Df Sum of Sq   RSS  AIC
## - Sepal.Width   1      0.01  4.00 -312
## - useless       1      0.02  4.00 -312
## <none>                       3.99 -310
## - Petal.Length  1      0.49  4.48 -300
## - Species       2      8.82 12.81 -198
## 
## Step:  AIC=-311.9
## Petal.Width ~ Petal.Length + useless + Species
## 
##                Df Sum of Sq   RSS  AIC
## - useless       1      0.02  4.02 -313
## <none>                       4.00 -312
## - Petal.Length  1      0.48  4.48 -302
## - Species       2      8.95 12.95 -198
## 
## Step:  AIC=-313.4
## Petal.Width ~ Petal.Length + Species
## 
##                Df Sum of Sq   RSS  AIC
## <none>                       4.02 -313
## - Petal.Length  1      0.50  4.52 -304
## - Species       2      8.93 12.95 -200
model6
## 
## Call:
## lm(formula = Petal.Width ~ Petal.Length + Species, data = train)
## 
## Coefficients:
##       (Intercept)       Petal.Length  Speciesversicolor  
##            0.1597             0.0664             0.8938  
##  Speciesvirginica  
##            1.4903
summary(model6)
## 
## Call:
## lm(formula = Petal.Width ~ Petal.Length + Species, data = train)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.7208 -0.1437  0.0005  0.1254  0.5460 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         0.1597     0.0441    3.62  0.00047 ***
## Petal.Length        0.0664     0.0192    3.45  0.00084 ***
## Speciesversicolor   0.8938     0.0746   11.98  < 2e-16 ***
## Speciesvirginica    1.4903     0.1020   14.61  < 2e-16 ***
## ---
## Signif. codes:  
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.205 on 96 degrees of freedom
## Multiple R-squared:  0.93,   Adjusted R-squared:  0.928 
## F-statistic:  427 on 3 and 96 DF,  p-value: <2e-16
RMSE(predict(model6, test), test$Petal.Width)
## [1] 0.1885
plot(test[,"Petal.Width"], predict(model6, test),
  xlim=c(0,3), ylim=c(0,3), 
  xlab = "actual", ylab = "predicted",
  main = "Petal.Width")
abline(0,1, col="red")
cor(test[,"Petal.Width"], predict(model6, test))
## [1] 0.9696

We see that the Species variable provides information to improve the regression model.

8.8 Alternative Regression Models

8.8.1 Regression Trees

Many models used for classification can also perform regression. For example CART implemented in rpart performs regression by estimating a value for each leaf note. Regression is always performed by rpart() when the response variable is not a factor().

library(rpart)
library(rpart.plot)

model7 <- rpart(Petal.Width ~ ., data = train,
  control = rpart.control(cp = 0.01))
model7
## n= 100 
## 
## node), split, n, deviance, yval
##       * denotes terminal node
## 
## 1) root 100 57.5700 1.2190  
##   2) Species=setosa 32  0.3797 0.2469 *
##   3) Species=versicolor,virginica 68 12.7200 1.6760  
##     6) Species=versicolor 35  1.5350 1.3310 *
##     7) Species=virginica 33  2.6010 2.0420 *
rpart.plot(model7)
The regression tree shows the predicted value in as the top number in the node. Also, remember that tree-based models automatically variable selection by choosing the splits.

Let’s evaluate the regression tree by calculating the RMSE.

RMSE(predict(model7, test), test$Petal.Width)
## [1] 0.182

And visualize the quality.

plot(test[,"Petal.Width"], predict(model7, test),
  xlim = c(0,3), ylim = c(0,3), 
  xlab = "actual", ylab = "predicted",
  main = "Petal.Width")
abline(0,1, col = "red")
cor(test[,"Petal.Width"], predict(model7, test))
## [1] 0.9717

The plot and the correlation coefficient indicate that the model is very good. In the plot we see an important property of this method which is that it predicts exactly the same value when the data falls in the same leaf node.

8.8.2 Regularized Regression

LASSO (least absolute shrinkage and selection operator) uses regularization to reduce the number of parameters. An implementation is called elastic net regularization which is implemented in the function lars() in package lars).

library(lars)
## Loaded lars 1.3

We create a design matrix (with dummy variables and interaction terms). lm() did this automatically for us, but for this lars() implementation we have to do it manually.

x <- model.matrix(~ . + Sepal.Length*Sepal.Width*Petal.Length ,
  data = train[, -4])
head(x)
##     (Intercept) Sepal.Length Sepal.Width Petal.Length
## 85            1        2.980       1.464        5.227
## 104           1        5.096       3.044        5.187
## 30            1        4.361       2.832        1.861
## 53            1        8.125       2.406        5.526
## 143           1        6.372       1.565        6.147
## 142           1        6.526       3.697        5.708
##     useless Speciesversicolor Speciesvirginica
## 85    5.712                 1                0
## 104   6.569                 0                1
## 30    4.299                 0                0
## 53    6.124                 1                0
## 143   6.553                 0                1
## 142   5.222                 0                1
##     Sepal.Length:Sepal.Width Sepal.Length:Petal.Length
## 85                     4.362                    15.578
## 104                   15.511                    26.431
## 30                    12.349                     8.114
## 53                    19.546                    44.900
## 143                    9.972                    39.168
## 142                   24.126                    37.253
##     Sepal.Width:Petal.Length
## 85                     7.650
## 104                   15.787
## 30                     5.269
## 53                    13.294
## 143                    9.620
## 142                   21.103
##     Sepal.Length:Sepal.Width:Petal.Length
## 85                                  22.80
## 104                                 80.45
## 30                                  22.98
## 53                                 108.01
## 143                                 61.30
## 142                                137.72
y <- train[, 4]
model_lars <- lars(x, y)

plot(model_lars)
model_lars
## 
## Call:
## lars(x = x, y = y)
## R-squared: 0.933 
## Sequence of LASSO moves:
##      Petal.Length Speciesvirginica Speciesversicolor
## Var             4                7                 6
## Step            1                2                 3
##      Sepal.Width:Petal.Length
## Var                        10
## Step                        4
##      Sepal.Length:Sepal.Width:Petal.Length useless
## Var                                     11       5
## Step                                     5       6
##      Sepal.Width Sepal.Length:Petal.Length Sepal.Length
## Var            3                         9            2
## Step           7                         8            9
##      Sepal.Width:Petal.Length Sepal.Width:Petal.Length
## Var                       -10                       10
## Step                       10                       11
##      Sepal.Length:Sepal.Width Sepal.Width Sepal.Width
## Var                         8          -3           3
## Step                       12          13          14

The fitted model’s plot shows how variables are added (from left to right to the model). The text output shoes that Petal.Length is the most important variable added to the model in step 1. Then Speciesvirginica is added and so on. This creates a sequence of nested models where one variable is added at a time. To select the best model Mallows’s Cp statistic can be used.

plot(model_lars, plottype = "Cp")
best <- which.min(model_lars$Cp)

coef(model_lars, s = best)
##                           (Intercept) 
##                             0.0000000 
##                          Sepal.Length 
##                             0.0000000 
##                           Sepal.Width 
##                             0.0000000 
##                          Petal.Length 
##                             0.0603837 
##                               useless 
##                            -0.0086551 
##                     Speciesversicolor 
##                             0.8463786 
##                      Speciesvirginica 
##                             1.4181850 
##              Sepal.Length:Sepal.Width 
##                             0.0000000 
##             Sepal.Length:Petal.Length 
##                             0.0000000 
##              Sepal.Width:Petal.Length 
##                             0.0029688 
## Sepal.Length:Sepal.Width:Petal.Length 
##                             0.0003151

The variables that are not selected have a \(\beta\) coefficient of 0.

To make predictions with this model, we first have to convert the test data into a design matrix with the dummy variables and interaction terms.

x_test <- model.matrix(~ . + Sepal.Length*Sepal.Width*Petal.Length,
  data = test[, -4])
head(x_test)
##     (Intercept) Sepal.Length Sepal.Width Petal.Length
## 128           1        8.017       1.541        3.515
## 92            1        5.268       4.064        6.064
## 50            1        5.461       4.161        1.117
## 134           1        6.055       2.951        4.599
## 8             1        4.900       5.096        1.086
## 58            1        5.413       4.728        5.990
##     useless Speciesversicolor Speciesvirginica
## 128   6.110                 0                1
## 92    4.938                 1                0
## 50    6.373                 0                0
## 134   5.595                 0                1
## 8     7.270                 0                0
## 58    7.092                 1                0
##     Sepal.Length:Sepal.Width Sepal.Length:Petal.Length
## 128                    12.35                    28.182
## 92                     21.41                    31.944
## 50                     22.72                     6.102
## 134                    17.87                    27.847
## 8                      24.97                     5.319
## 58                     25.59                    32.424
##     Sepal.Width:Petal.Length
## 128                    5.417
## 92                    24.647
## 50                     4.649
## 134                   13.572
## 8                      5.531
## 58                    28.323
##     Sepal.Length:Sepal.Width:Petal.Length
## 128                                 43.43
## 92                                 129.83
## 50                                  25.39
## 134                                 82.19
## 8                                   27.10
## 58                                 153.31

Now we can compute the predictions.

predict(model_lars, x_test[1:5,], s = best)
## $s
## 6 
## 7 
## 
## $fraction
##      6 
## 0.4286 
## 
## $mode
## [1] "step"
## 
## $fit
##    128     92     50    134      8 
## 1.8237 1.5003 0.2505 1.9300 0.2439

The prediction is the fit element. We can calculate the RMSE.

RMSE(predict(model_lars, x_test, s = best)$fit, test$Petal.Width)
## [1] 0.1907

And visualize the prediction.

plot(test[,"Petal.Width"], 
     predict(model_lars, x_test, s = best)$fit,
     xlim=c(0,3), ylim=c(0,3), 
     xlab = "actual", ylab = "predicted",
     main = "Petal.Width")
abline(0,1, col = "red")
cor(test[,"Petal.Width"],
    predict(model_lars, x_test, s = best)$fit)
## [1] 0.9686

The model shows good predictive power on the test set.

8.8.3 Other Types of Regression

  • Robust regression: robust against violation of assumptions like heteroscedasticity and outliers (robustbase::roblm() and robustbase::robglm)
  • Generalized linear models (glm()). An example is logistic regression discussed in the next chapter.
  • Nonlinear least squares (nlm()).

8.9 Exercises

We will again use the Palmer penguin data for the exercises.

library(palmerpenguins)
head(penguins)
## # A tibble: 6 × 8
##   species island    bill_length_mm bill_depth_mm
##   <chr>   <chr>              <dbl>         <dbl>
## 1 Adelie  Torgersen           39.1          18.7
## 2 Adelie  Torgersen           39.5          17.4
## 3 Adelie  Torgersen           40.3          18  
## 4 Adelie  Torgersen           NA            NA  
## 5 Adelie  Torgersen           36.7          19.3
## 6 Adelie  Torgersen           39.3          20.6
## # ℹ 4 more variables: flipper_length_mm <dbl>,
## #   body_mass_g <dbl>, sex <chr>, year <dbl>

Create an R markdown document that performs the following:

  1. Create a linear regression model to predict the weight of a penguin (body_mass_g).

  2. How high is the R-squared. What does it mean.

  3. What variables are significant, what are not?

  4. Use stepwise variable selection to remove unnecessary variables.

  5. Predict the weight for the following new penguin:

    new_penguin <- tibble(
      species = factor("Adelie", 
        levels = c("Adelie", "Chinstrap", "Gentoo")),
      island = factor("Dream", 
        levels = c("Biscoe", "Dream", "Torgersen")),
     bill_length_mm = 39.8, 
     bill_depth_mm = 19.1, 
     flipper_length_mm = 184, 
     body_mass_g = NA, 
     sex = factor("male", levels = c("female", "male")), 
     year = 2007
    ) 
    new_penguin
    ## # A tibble: 1 × 8
    ##   species island bill_length_mm bill_depth_mm
    ##   <fct>   <fct>           <dbl>         <dbl>
    ## 1 Adelie  Dream            39.8          19.1
    ## # ℹ 4 more variables: flipper_length_mm <dbl>,
    ## #   body_mass_g <lgl>, sex <fct>, year <dbl>
  6. Create a regression tree. Look at the tree and explain what it does. Then use the regression tree to predict the weight for the above penguin.